Skip to main content

Dipole Re-Radiation Effects in Surface Enhanced Raman Scattering

  • Chapter
  • First Online:
The Mie Theory

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 169))

Abstract

In this chapter we use extensions of Mie theory to study electromagnetic enhancement factors associated with surface enhanced Raman scattering (SERS) from molecules adsorbed onto metal sphere array structures, comparing results from the more rigorous dipole re-radiation (DR) expression for Raman enhancement with the commonly used plane-wave (PW) enhancement formula. The DR and PW calculations are based on the T-matrix method for determining optical scattering from multiple spheres. In the PW expression, the enhancement is considered to be equal to the product of the squares of the local electric fields, \(|\mathbf{E}_\mathrm{ loc}(\omega )|^2|\mathbf{E}_\mathrm{ loc}(\omega ^{\prime })|^2\) or \(|\mathbf{E}_\mathrm{ loc}(\omega )|^4\) for zero Stokes shift, obtained from plane wave Mie scattering. In the DR calculation, the induced dipole in a molecule that is located at the surface of one of the particles serves as a dipole source at the Stokes-shifted frequency that scatters from the particles to define an overall enhancement factor. The SERS enhancement factors are determined for chains of 100 nm diameter Ag spheres and for chains of 100 nm Ag sphere dimers for various sphere and dimer separations and for various chain lengths, with the dimer gap fixed at 6.25 nm. We compare the PW and DR results for two different detector locations, a backscattering configuration normal to the axis of the chain, and a \(135^\circ \) scattering direction that includes the plane of the chain axis, in order to highlight far-field phase interference effects that are incorporated in the DR result but not PW. We find that the DR and PW results have negligible differences for the backscattering geometry, but far-field effects play a significant role in the overall enhancement factor for the non-backscattered location. This demonstrates the importance of including DR effects in the interpretation of SERS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)

    Article  Google Scholar 

  2. D.L. Jeanmaire, R.P. van Duyne, Electroanal. Chem. 84, 1 (1977)

    Article  Google Scholar 

  3. M. Fleischmann, P.J. Hendra, A.J. McQuillian, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  4. M. Moskovits, J. Chem. Phys. 69, 4159 (1978)

    Article  ADS  Google Scholar 

  5. M.R. Philpott, J. Phys. Colloques 44, 295 (1983)

    Article  Google Scholar 

  6. H. Metiu, P. Das, Ann. Rev. Phys. Chem. 35, 507 (1984)

    Article  ADS  Google Scholar 

  7. G.C. Schatz, Acc. Chem. Res. 17, 370 (1984)

    Article  Google Scholar 

  8. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  9. A. Wokaun, Mol. Phys. 56, 1 (1985)

    Article  ADS  Google Scholar 

  10. M. Kerker, Enhanced Raman scattering in colloidal systems. No. 45 in Studies in Physical and Theoretical Chemistry (Elsevier, Amsterdam, 1987)

    Google Scholar 

  11. M. Kerker, D.S. Wang, H. Chew, App. Opt. 19, 4159 (1980)

    Article  ADS  Google Scholar 

  12. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  13. H. Chew, P.J. McNulty, M. Kerker, Phys. Rev. A 13, 396 (1976)

    Article  ADS  Google Scholar 

  14. H. Chew, M. Kerker, P.J. McNulty, J. Opt. Soc. Am. 66, 440 (1976)

    Article  ADS  Google Scholar 

  15. H. Chew, M. Kerker, D.D. Cooke, Phys. Rev. A 16, 320 (1977)

    Article  ADS  Google Scholar 

  16. R. Ruppin, J. Chem. Phys. 76, 1681 (1982)

    Article  ADS  Google Scholar 

  17. M. Kerker, J. Opt. Soc. Am. B 2, 1327 (1985)

    Article  ADS  Google Scholar 

  18. M. Kerker, J. Colloid Interface Sci. 118, 417 (1987)

    Article  Google Scholar 

  19. L.K. Ausman, G.C. Schatz, J. Chem. Phys. 131, 084708 (2009)

    Article  ADS  Google Scholar 

  20. S. Zou, N. Janel, G.C. Schatz, J. Chem. Phys. 120, 10871 (2004)

    Article  ADS  Google Scholar 

  21. S. Zou, G.C. Schatz, J. Chem. Phys. 121, 12606 (2004)

    Article  ADS  Google Scholar 

  22. S. Zou, G.C. Schatz, Chem. Phys. Lett. 403, 62 (2005)

    Article  ADS  Google Scholar 

  23. S. Zou, G.C. Schatz,Coupled Plasmonic Plasmon/Photonic Resonance Effects in SERS. No. 103 in Topics in Applied Physics (Springer, Berlin, 2006)

    Google Scholar 

  24. S. Zou, G.C. Schatz, Nanotechnology 17, 2813 (2006)

    Article  ADS  Google Scholar 

  25. S. Zou, G.C. Schatz, Isreal J. Chem. 46, 293 (2006)

    Google Scholar 

  26. L. Quin, S. Zou, C. Xue, A. Atkinson, G.C. Schatz, C.A. Mirkin, Proc. Natl. Acad. Sci. USA 103, 13300 (2006)

    Article  ADS  Google Scholar 

  27. J.P. Camden, J.A. Dieringer, Y. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, R.P. van Duyne, J. Am. Chem. Soc. 130, 12616 (2008)

    Article  Google Scholar 

  28. W. Wei, S. Li, J.E. Millstone, M.J. Banholzer, X. Chen, X. Xu, G.C. Schatz, C.A. Mirkin, Angew. Chem. Int. Edit. 48, 4210 (2009)

    Article  Google Scholar 

  29. J.A. Dieringer, K.L. Wustholz, D.J. Masiello, J.P. Camden, S.L. Kleinman, G.C. Schatz, R.P. van Duyne, J. Am. Chem. Soc. 131, 849 (2009)

    Article  Google Scholar 

  30. K. Kneipp, W. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  31. S. Nie, S. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  32. M. Moskovits, L.L. Tay, J. Yang, T. Haslett, SERS and the single molecule. No. 82 in Topics in Applied Physics (Springer, Berlin, 2002)

    Google Scholar 

  33. B. Vlčková, M. Moskovits, I. Pavel, K. Šišková, M. Sládková, M. Šlouf, Chem. Phys. Lett. 455, 131 (2008)

    Article  ADS  Google Scholar 

  34. Y. Fang, N.H. Seong, D.D. Dlott, Science 321, 388 (2008)

    Article  ADS  Google Scholar 

  35. K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, R.P. van Duyne, J. Am. Chem. Soc. 125, 588 (2003)

    Article  Google Scholar 

  36. X. Zhang, M.A. Young, O. Lyandres, R.P. van Duyne, J. Am. Chem. Soc. 127, 4484 (2005)

    Article  Google Scholar 

  37. N.C. Shah, O. Lyandres, C.R. Yonzon, X. Zhang, R.P. van Duyne, ACS Symposium Series 963, 107 (2007)

    Article  Google Scholar 

  38. S.D. Hudson, G. Chumanov, Anal. Bioanal. Chem. 394, 679 (2009)

    Article  Google Scholar 

  39. D.A. Stuart, K.B. Biggs, R.P. van Duyne, Analyst 131, 568 (2006)

    Article  ADS  Google Scholar 

  40. A.V. Whitney, F. Casadio, R.P. van Duyne, App. Spect. 61, 994 (2007)

    Article  ADS  Google Scholar 

  41. C.L. Brosseau, A. Gambardella, F. Casadio, C.M. Grzywacz, J. Wouters, R.P. van Duyne, Anal. Chem. 81, 3056 (2009)

    Article  Google Scholar 

  42. S. Malynych, G. Chumanov, J. Am. Chem. Soc. 125, 2896 (2003)

    Article  Google Scholar 

  43. A.S. Kumbhar, M.K. Kinnan, G. Chumanov, J. Am. Chem. Soc. 127, 12444 (2005)

    Article  Google Scholar 

  44. M.K. Kinnan, G. Chumanov, J. Phys. Chem. C 111, 18010 (2007)

    Article  Google Scholar 

  45. Y.D. Suh, G.K. Schenter, L. Zhu, H.P. Lu, Ultramicroscopy 97, 89 (2003)

    Article  Google Scholar 

  46. L. Zhu, G.K. Schenter, M. Micic, Y.D. Suh, N. Klymyshyn, H.P. Lu, Proc. SPIE 4962, 70 (2003)

    Article  ADS  Google Scholar 

  47. P.I. Geshev, K. Dickmann, J. Opt. A: Pure Appl. Opt. 8, S161 (2006)

    Article  ADS  Google Scholar 

  48. T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, G. Haran, Proc. Natl. Acad. Sci. U.S.A. 105, 16448 (2008)

    Article  ADS  Google Scholar 

  49. D. Pristinski, E.C. la Ru, S. Tan, S. Sukhishvili, H. Du, Opt. Express 16, 20117 (2008)

    Article  ADS  Google Scholar 

  50. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  51. D.W. Mackowski, Proc. R. Soc. London Ser. A 433, 599 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. D.W. Mackowski, J. Opt. Soc. Am. A 11, 2851 (1994)

    Article  ADS  Google Scholar 

  53. D.W. Mackowski, M.I. Mishchenko, J. Opt. Soc. Am. A 13, 2266 (1996)

    Article  ADS  Google Scholar 

  54. L.K. Ausman, G.C. Schatz, J. Chem. Phys. 129, 054704 (2008)

    Article  ADS  Google Scholar 

  55. C.T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext Educational, Scranton, San Francisco, Toronto, London, 1971)

    Google Scholar 

  56. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  57. D.J. Masiello, G.C. Schatz, Phys. Rev. A 78, 042505 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by grant DE-SC0004752 funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ausman, L.K., Schatz, G.C. (2012). Dipole Re-Radiation Effects in Surface Enhanced Raman Scattering. In: Hergert, W., Wriedt, T. (eds) The Mie Theory. Springer Series in Optical Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28738-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28738-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28737-4

  • Online ISBN: 978-3-642-28738-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics