Skip to main content

tRNA Biogenesis and Processing

  • Chapter
  • First Online:
RNA Metabolism in Trypanosomes

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 28))

Abstract

tRNAs are essential in all domains of life; this becomes especially important in trypanosomatids, where for all purposes the same set of tRNAs are utilized for cytoplasmic and mitochondrial protein synthesis. What makes the system special is that although tRNA biogenesis starts in the nucleus, the resulting products will satisfy translational requirements in two very different compartments. The balance between intracellular tRNA transport and post-transcriptional modifications may modulate tRNA function in gene expression. This chapter will summarize what is currently known about various processes that a tRNA must undergo in a trypanosomatid cell to become fully functional. Whenever possible, we will highlight both commonalities and differences with other systems, while emphasizing open questions that may lead to new and surprising discoveries in this group of evolutionarily divergent organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21:87–96

    Article  PubMed  CAS  Google Scholar 

  • Alfonzo JD, Soll D (2009) Mitochondrial tRNA import–the challenge to understand has just begun. Biol Chem 390:717–722

    Article  PubMed  CAS  Google Scholar 

  • Alfonzo JD, Blanc V, Estevez AM, Rubio MA, Simpson L (1999) C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J 18:7056–7062

    Article  PubMed  CAS  Google Scholar 

  • Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Bjork GR, Tamame M, Hinnebusch AG (1998) The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 12:3650–3662

    Article  PubMed  CAS  Google Scholar 

  • Arhin GK, Shen S, Irmer H, Ullu E, Tschudi C (2004) Role of a 300-kilodalton nuclear complex in the maturation of Trypanosoma brucei initiator methionyl-tRNA. Eukaryot Cell 3:893–899

    Article  PubMed  CAS  Google Scholar 

  • Arhin GK, Shen S, Perez IF, Tschudi C, Ullu E (2005) Downregulation of the essential Trypanosoma brucei La protein affects accumulation of elongator methionyl-tRNA. Mol Biochem Parasitol 144:104–108

    Article  PubMed  CAS  Google Scholar 

  • Arts GJ, Kuersten S, Romby P, Ehresmann B, Mattaj IW (1998) The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J 17:7430–7441

    Article  PubMed  CAS  Google Scholar 

  • Baird NJ, Fang XW, Srividya N, Pan T, Sosnick TR (2007) Folding of a universal ribozyme: the ribonuclease P RNA. Q Rev Biophys 40:113–161

    Article  PubMed  CAS  Google Scholar 

  • Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya SN, Mukherjee S, Adhya S (2000) Mutations in a tRNA import signal define distinct receptors at the two membranes of Leishmania mitochondria. Mol Cell Biol 20:7410–7417

    Article  PubMed  CAS  Google Scholar 

  • Bouzaidi-Tiali N, Aeby E, Charriere F, Pusnik M, Schneider A (2007) Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J 26:4302–4312

    Article  PubMed  CAS  Google Scholar 

  • Bruske EI, Sendfeld F, Schneider A (2009) Thiolated tRNAs of Trypanosoma brucei are imported into mitochondria and dethiolated after import. J Biol Chem 284:36491–36499

    Article  PubMed  CAS  Google Scholar 

  • Carrara G, Calandra P, Fruscoloni P, Tocchini-Valentini GP (1995) Two helices plus a linker: a small model substrate for eukaryotic RNase P. Proc Natl Acad Sci U S A 92:2627–2631

    Article  PubMed  CAS  Google Scholar 

  • Charriere F, Helgadottir S, Horn EK, Soll D, Schneider A (2006) Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei. Proc Natl Acad Sci U S A 103:6847–6852

    Article  PubMed  CAS  Google Scholar 

  • Cook AG, Fukuhara N, Jinek M, Conti E (2009) Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461:60–65

    Article  PubMed  CAS  Google Scholar 

  • Crain PF, Alfonzo JD, Rozenski J, Kapushoc ST, McCloskey JA, Simpson L (2002) Modification of the universally unmodified uridine-33 in a mitochondria-imported edited tRNA and the role of the anticodon arm structure on editing efficiency. RNA 8:752–761

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Olson MV (1979) Transcription and processing of cloned yeast tyrosine tRNA genes microinjected into frog oocytes. Nature 278:137–143

    Article  PubMed  Google Scholar 

  • Dorner M, Altmann M, Paabo S, Morl M (2001) Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 12:2688–2698

    PubMed  CAS  Google Scholar 

  • Engelke DR, Hopper AK (2006) Modified view of tRNA: stability amid sequence diversity. Mol Cell 21:144–145

    Article  PubMed  CAS  Google Scholar 

  • Esakova O, Krasilnikov AS (2010) Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–1747

    Article  PubMed  CAS  Google Scholar 

  • Esseiva AC, Naguleswaran A, Hemphill A, Schneider A (2004) Mitochondrial tRNA import in Toxoplasma gondii. J Biol Chem 279:42363–42368

    Article  PubMed  CAS  Google Scholar 

  • Foldynova-Trantirkova S, Paris Z, Sturm NR, Campbell DA, Lukes J (2005) The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. Int J Parasitol 35:359–366

    Article  PubMed  CAS  Google Scholar 

  • Frank DN, Pace NR (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67:153–180

    Article  PubMed  CAS  Google Scholar 

  • Gaston KW, Rubio MA, Spears JL, Pastar I, Papavasiliou FN, Alfonzo JD (2007) C to U editing at position 32 of the anticodon loop precedes tRNA 5′ leader removal in trypanosomatids. Nucleic Acids Res 35:6740–6749

    Article  PubMed  CAS  Google Scholar 

  • Gerber AP, Keller W (1999) An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Goswami S, Dhar G, Mukherjee S, Mahata B, Chatterjee S, Home P, Adhya S (2006) A bifunctional tRNA import receptor from Leishmania mitochondria. Proc Natl Acad Sci U S A 103:8354–8359

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (2003) Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55:227–233

    Article  PubMed  CAS  Google Scholar 

  • Greer CL, Soll D, Willis I (1987) Substrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae. Mol Cell Biol 7:76–84

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Hancock K, Hajduk SL (1990) The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem 265:19208–19215

    PubMed  CAS  Google Scholar 

  • Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    Article  PubMed  CAS  Google Scholar 

  • Hopper AK, Pai DA, Engelke DR (2010) Cellular dynamics of tRNAs and their genes. FEBS Lett 584:310–317

    Article  PubMed  CAS  Google Scholar 

  • Hsieh J, Fierke CA (2009) Conformational change in the Bacillus subtilis RNase P holoenzyme–pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA 15:1565–1577

    Article  PubMed  CAS  Google Scholar 

  • Johnson PF, Abelson J (1983) The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature 302:681–687

    Article  PubMed  CAS  Google Scholar 

  • Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:159–162

    Article  Google Scholar 

  • Kaneko T, Suzuki T, Kapushoc ST, Rubio MA, Ghazvini J, Watanabe K, Simpson L (2003) Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO J 22:657–667

    Article  PubMed  CAS  Google Scholar 

  • Kapushoc ST, Alfonzo JD, Simpson L (2002) Differential localization of nuclear-encoded tRNAs between the cytosol and mitochondrion in Leishmania tarentolae. RNA 8:57–68

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev AV, Krivenko AA, Pace NR (2009) Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA 15:266–276

    Article  PubMed  CAS  Google Scholar 

  • Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M (2009) Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458:228–232

    Article  PubMed  CAS  Google Scholar 

  • Levinger L, Greene V, Birk A, Bourne R, Kolla S, Whyte S (1995) RNase P and 3′-tRNase processing matrices in the analysis of Drosophila transfer RNA D/T loop tertiary contacts. Nucleic Acids Symp Ser 33:82–84

    PubMed  CAS  Google Scholar 

  • Levinger L, Morl M, Florentz C (2004) Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res 32:5430–5441

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486

    Article  PubMed  CAS  Google Scholar 

  • Lima BD, Simpson L (1996) Sequence-dependent in vivo importation of tRNAs into the mitochondrion of Leishmania tarentolae. RNA 2:429–440

    PubMed  CAS  Google Scholar 

  • Lipowsky G, Bischoff FR, Izaurralde E, Kutay U, Schafer S, Gross HJ, Beier H, Gorlich D (1999) Coordination of tRNA nuclear export with processing of tRNA. RNA 5:539–549

    Article  PubMed  CAS  Google Scholar 

  • Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 365:799–817

    Article  PubMed  CAS  Google Scholar 

  • Lye LF, Chen DH, Suyama Y (1993) Selective import of nuclear-encoded tRNAs into mitochondria of the protozoan Leishmania tarentolae. Mol Biochem Parasitol 58:233–245

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra S, Ghosh T, Adhya S (1994) Import of small RNAs into Leishmania mitochondria in vitro. Nucleic Acids Res 22:3381–3386

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra S, Ghosh S, Bera SK, Ghosh T, Das A, Adhya S (1998) The D arm of tRNATyr is necessary and sufficient for import into Leishmania mitochondria in vitro. Nucleic Acids Res 26:2037–2041

    Article  PubMed  CAS  Google Scholar 

  • Marechal-Drouard L, Weil JH, Guillemaut P (1988) Import of several tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris. Nucleic Acids Res 16:4777–4788

    Article  PubMed  CAS  Google Scholar 

  • Martin RP, Schneller JM, Stahl AJ, Dirheimer G (1979) Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C–U–U) into yeast mitochondria. Biochemistry 18:4600–4605

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Schiffer S, Marchfelder A (2000) tRNA 3′ processing in plants: nuclear and mitochondrial activities differ. Biochemistry 39:2096–2105

    Article  PubMed  CAS  Google Scholar 

  • Melton DA, De Robertis EM, Cortese R (1980) Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature 284:143–148

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC, Bell SD, Nelson RG, Barry JD (1991) tRNAs of Trypanosoma brucei. Unusual gene organization and mitochondrial importation. J Biol Chem 266:18313–18317

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Basu S, Home P, Dhar G, Adhya S (2007) Necessary and sufficient factors for the import of transfer RNA into the kinetoplast mitochondrion. EMBO Rep 8:589–595

    Article  PubMed  CAS  Google Scholar 

  • Nashimoto M, Tamura M, Kaspar RL (1999) Selection of cleavage site by mammalian tRNA 3′ processing endoribonuclease. J Mol Biol 287:727–740

    Article  PubMed  CAS  Google Scholar 

  • Navaratnam N, Morrison JR, Bhattacharya S, Patel D, Funahashi T, Giannoni F, Teng BB, Davidson NO, Scott J (1993) The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 268:20709–20712

    PubMed  CAS  Google Scholar 

  • Paris Z, Rubio MA, Lukes J, Alfonzo JD (2009) Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein. RNA 15:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Phizicky EM, Alfonzo JD (2009) Do all modifications benefit all tRNAs? FEBS Lett 584:265–271

    Article  Google Scholar 

  • Pusnik M, Charriere F, Maser P, Waller RF, Dagley MJ, Lithgow T, Schneider A (2009) The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane. Mol Biol Evol 26:671–680

    Article  PubMed  CAS  Google Scholar 

  • Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Soll D (2009) A cytidine deaminase edits C to U in transfer RNAs in Archaea. Science 324:657–659

    Article  PubMed  CAS  Google Scholar 

  • Rinehart J, Krett B, Rubio MA, Alfonzo JD, Soll D (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Genes Dev 19:583–592

    Article  PubMed  CAS  Google Scholar 

  • Rubio MA, Liu X, Yuzawa H, Alfonzo JD, Simpson L (2000) Selective importation of RNA into isolated mitochondria from Leishmania tarentolae. RNA 6:988–1003

    Article  PubMed  CAS  Google Scholar 

  • Rubio MA, Ragone FL, Gaston KW, Ibba M, Alfonzo JD (2006) C to U editing stimulates A to I editing in the anticodon loop of a cytoplasmic threonyl tRNA in Trypanosoma brucei. J Biol Chem 281:115–120

    Article  PubMed  CAS  Google Scholar 

  • Rubio MA, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GA, Papavasiliou FN, Alfonzo JD (2007) An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A 104:7821–7826

    Article  PubMed  CAS  Google Scholar 

  • Rubio MA, Rinehart JJ, Krett B, Duvezin-Caubet S, Reichert AS, Soll D, Alfonzo JD (2008) Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc Natl Acad Sci U S A 105:9186–9191

    Article  PubMed  CAS  Google Scholar 

  • Rusconi CP, Cech TR (1996) The anticodon is the signal sequence for mitochondrial import of glutamine tRNA in Tetrahymena. Genes Dev 10:2870–2880

    Article  PubMed  CAS  Google Scholar 

  • Salavati R, Panigrahi AK, Stuart KD (2001) Mitochondrial ribonuclease P activity of Trypanosoma brucei. Mol Biochem Parasitol 115:109–117

    Article  PubMed  CAS  Google Scholar 

  • Salinas T, Duchene AM, Delage L, Nilsson S, Glaser E, Zaepfel M, Marechal-Drouard L (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 103:18362–18367

    Article  PubMed  CAS  Google Scholar 

  • Salinas T, Duchene AM, Marechal-Drouard L (2008) Recent advances in tRNA mitochondrial import. Trends Biochem Sci 33:320–329

    Article  PubMed  CAS  Google Scholar 

  • Schiffer S, Helm M, Theobald-Dietrich A, Giege R, Marchfelder A (2001) The plant tRNA 3′ processing enzyme has a broad substrate spectrum. Biochemistry 40:8264–8272

    Article  PubMed  CAS  Google Scholar 

  • Sherrer RL, Yermovsky-Kammerer AE, Hajduk SL (2003) A sequence motif within trypanosome precursor tRNAs influences abundance and mitochondrial localization. Mol Cell Biol 23:9061–9072

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Chen DH, Suyama Y (1994) A nuclear tRNA gene cluster in the protozoan Leishmania tarentolae and differential distribution of nuclear-encoded tRNAs between the cytosol and mitochondria. Mol Biochem Parasitol 65:23–37

    Article  PubMed  CAS  Google Scholar 

  • Simpson AM, Suyama Y, Dewes H, Campbell DA, Simpson L (1989) Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 17:5427–5445

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 33(Database Issue):D139–D140

    Article  PubMed  CAS  Google Scholar 

  • Stange N, Gross HJ, Beier H (1988) Wheat germ splicing endonuclease is highly specific for plant pre-tRNAs. EMBO J 7:3823–3828

    PubMed  CAS  Google Scholar 

  • Suyama Y (1967) The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry 6:2829–2839

    Article  PubMed  CAS  Google Scholar 

  • Suyama Y, Wong S, Campbell DA (1998) Regulated tRNA import in Leishmania mitochondria. Biochim Biophys Acta 1396:138–142

    Article  PubMed  CAS  Google Scholar 

  • Takaku H, Minagawa A, Takagi M, Nashimoto M (2004) A novel 4-base-recognizing RNA cutter that can remove the single 3′ terminal nucleotides from RNA molecules. Nucleic Acids Res 32:91

    Article  Google Scholar 

  • Tan TH, Pach R, Crausaz A, Ivens A, Schneider A (2002) tRNAs in Trypanosoma brucei: genomic organization, expression, and mitochondrial import. Mol Cell Biol 22:3707–3717

    Article  PubMed  CAS  Google Scholar 

  • Vogel A, Schilling O, Spath B, Marchfelder A (2005) The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties. Biol Chem 386:1253–1264

    PubMed  CAS  Google Scholar 

  • Wohlgamuth-Benedum JM, Rubio MA, Paris Z, Long S, Poliak P, Lukes J, Alfonzo JD (2009) Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J Biol Chem 284:23947–23953

    Article  PubMed  CAS  Google Scholar 

  • Wolin SL, Cedervall T (2002) The La protein. Annu Rev Biochem 71:375–403

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Scott F, Fierke CA, Engelke DR (2002) Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu Rev Biochem 71:165–189

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Steitz TA (2006) A story with a good ending: tRNA 3′-end maturation by CCA-adding enzymes. Curr Opin Struct Biol 16:12–17

    Article  PubMed  CAS  Google Scholar 

  • Yoo CJ, Wolin SL (1997) The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell 89:393–402

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Altman S (1995) Substrate recognition by human RNase P: identification of small, model substrates for the enzyme. EMBO J 14:159–168

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Alfonzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Spears, J.L., Rubio, M.A.T., Sample, P.J., Alfonzo, J.D. (2012). tRNA Biogenesis and Processing. In: Bindereif, A. (eds) RNA Metabolism in Trypanosomes. Nucleic Acids and Molecular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28687-2_5

Download citation

Publish with us

Policies and ethics