Skip to main content

Causal Discovery for Linear Non-Gaussian Acyclic Models in the Presence of Latent Gaussian Confounders

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

LiNGAM has been successfully applied to casual inferences of some real world problems. Nevertheless, basic LiNGAM assumes that there is no latent confounder of the observed variables, which may not hold as the confounding effect is quite common in the real world. Causal discovery for LiNGAM in the presence of latent confounders is a more significant and challenging problem. In this paper, we propose a cumulant-based approach to the pairwise causal discovery for LiNGAM in the presence of latent confounders. The method assumes that the latent confounder is Gaussian distributed and statistically independent of the disturbances. We give a theoretical proof that in the presence of latent Gaussian confounders, the causal direction of the observed variables is identifiable under the mild condition that the disturbances are both super-gaussian or sub-gaussian. Experiments on synthesis data and real world data have been conducted to show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearl, J.: Causality: models, reasoning, and inference. Cambridge Univ. Pr. (2000)

    Google Scholar 

  2. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, prediction, and search. The MIT Press (2000)

    Google Scholar 

  3. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. The Journal of Machine Learning Research 7, 2003–2030 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Sogawa, Y., Shimizu, S., Hyvärinen, A., Washio, T., Shimamura, T., Imoto, S.: Discovery of Exogenous Variables in Data with More Variables Than Observations. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6352, pp. 67–76. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  6. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  7. Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K.: Directlingam: A direct method for learning a linear non-gaussian structural equation model. Journal of Machine Learning Research 12, 1225–1248 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Hyvärinen, A.: Pairwise measures of causal direction in linear non-gaussian acyclic models. In: JMLR Workshop and Conference Proceedings (Proc. 2nd Asian Conference on Machine Learning, ACML 2010), vol. 13, pp. 1–16 (2010)

    Google Scholar 

  9. Hoyer, P.O., Shimizu, S., Kerminen, A.J.: Estimation of linear, non-gaussian causal models in the presence of confounding latent variables. Arxiv preprint cs/0603038 (2006)

    Google Scholar 

  10. Janzing, D., Peters, J., Mooij, J., Schölkopf, B.: Identifying confounders using additive noise models. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 249–257. AUAI Press (2009)

    Google Scholar 

  11. Kawahara, Y., Bollen, K., Shimizu, S., Washio, T.: Grouplingam: Linear non-gaussian acyclic models for sets of variables. Arxiv preprint arXiv:1006.5041 (2010)

    Google Scholar 

  12. Daniušis, P., Janzing, D., Mooij, J., Zscheischler, J., Steudel, B., Zhang, K., Schölkopf, B.: Inferring deterministic causal relations. In: Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), pp. 143–150. AUAI Press, Corvallis (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Chan, L. (2012). Causal Discovery for Linear Non-Gaussian Acyclic Models in the Presence of Latent Gaussian Confounders. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics