Skip to main content

Joint Block Diagonalization Algorithms for Optimal Separation of Multidimensional Components

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

This paper deals with non-orthogonal joint block diagonalization. Two algorithms which minimize the Kullback-Leibler divergence between a set of real positive-definite matrices and a block-diagonal transformation thereof are suggested. One algorithm is based on the relative gradient, and the other is based on a quasi-Newton method. These algorithms allow for the optimal, in the mean square error sense, blind separation of multidimensional Gaussian components. Simulations demonstrate the convergence properties of the suggested algorithms, as well as the dependence of the criterion on some of the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nion, D.: A tensor framework for nonunitary joint block diagonalization. IEEE Trans. Signal Process. 59(10), 4585–4594 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ghennioui, H., et al.: Gradient-based joint block diagonalization algorithms: Application to blind separation of FIR convolutive mixtures. Signal Process. 90(6), 1836–1849 (2010)

    Article  MATH  Google Scholar 

  3. Bousbia-Salah, H., Belouchrani, A., Abed-Meraim, K.: Blind separation of non stationary sources using joint block diagonalization. In: Proc. SSP, pp. 448–451 (August 2001)

    Google Scholar 

  4. Pham, D.-T.: Joint approximate diagonalization of positive definite hermitian matrices. SIAM J. Matrix Anal. Appl. 22(4), 1136–1152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pham, D.T.: Blind Separation of Cyclostationary Sources Using Joint Block Approximate Diagonalization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 244–251. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Lahat, D., Cardoso, J.-F., Messer, H.: Second-order multidimensional ICA: Performance analysis. Submitted to IEEE. Trans. Sig. Proc. (September 2011)

    Google Scholar 

  7. Comon, P.: Independent component analysis. In: Proc. Int. Signal Process. Workshop on HOS, Chamrousse, France, pp. 111–120 (July 1991); keynote address. Republished in HOS, J.-L. Lacoume ed., Elsevier, 1992, pp. 29–38

    Google Scholar 

  8. Pham, D.-T., Cardoso, J.-F.: Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Process. 49(9), 1837–1848 (2001)

    Article  MathSciNet  Google Scholar 

  9. Cardoso, J.-F., Laheld, B.: Equivariant adaptive source separation. IEEE Trans. Signal Process. 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  10. Pham, D.-T.: Information approach to blind source separation and deconvolution. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Statistical Learning, ch.7, pp. 153–182. Springer, Heidelberg (2009)

    Google Scholar 

  11. Graham, A.: Kronecker Products and Matrix Calculus with Applications. Mathematics and its Applications. Ellis Horwood Ltd., Chichester (1981)

    MATH  Google Scholar 

  12. Gutch, H.W., Maehara, T., Theis, F.J.: Second Order Subspace Analysis and Simple Decompositions. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 370–377. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Vía, J., et al.: A Maximum Likelihood approach for Independent Vector Analysis of Gaussian data sets. In: Proc. MLSP 2011, Beijing, China (September 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lahat, D., Cardoso, JF., Messer, H. (2012). Joint Block Diagonalization Algorithms for Optimal Separation of Multidimensional Components. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics