Skip to main content

Gas Sensors Based on Well-Defined Nanostructured Thin Films

  • Chapter
  • First Online:
Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

  • 1676 Accesses

Abstract

The ability to prepare nanoparticles having well-defined size and narrow size distribution is an important advantage for optimising and understanding nanoparticulate gas sensors. It allows to monitor the size effect of SnO\(_{2}\) particles as well as that of the addition of the noble metal particles on sensing behaviour. The synthesis of monodisperse SnOx, Pd and Ag nanoparticles and the development the thin films deposition technology as well as suitable microchip platforms are described. Sensing results of SnO\(_{x}\):M mixed nanoparticle layers are presented, especially the effects of operating temperature, particle size, type of noble metal additive and electrode distance are investigated. Sensor to sensor reproducibility as well as long-term stability is investigated. Finally, pure Pd nanoparticle layers are demonstrated to show concentration-specific H\(_{2}\) sensing at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)

    Article  Google Scholar 

  2. P.T. Moseley, B.C. Tofield (eds.), Solid State Gas Sensors (Adam Hilger, Bristol, 1987)

    Google Scholar 

  3. K. Ihokura, J. Watson. The Stannic Oxide Gas Sensor—Principles and Applications (CRC Press, Boca Raton, 1994)

    Google Scholar 

  4. M.J. Madou, S.R. Morrison, Chemical Sensing with Sold State Devices (Academic Press, New York, 1989)

    Google Scholar 

  5. K. Ihokura, Application of sintered tin (IV) oxide for gas detector, NTG—Fachberichte. 79, 312–317 (1982)

    Google Scholar 

  6. L.I. Poopova, M.G. Michailov, V.K. Gueorguiev, Structrue and morphology of thin SnO\(_{2}\) films. Thin Solid Films 186, 107–112 (1990)

    Article  ADS  Google Scholar 

  7. S. Nicoletti, L. Dori, G. Cardinali and A. Parisini, Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped \({\rm SnO}_{2}\). Thin sensing films deposited by the pulsed laser ablation. Sens. Actuators B 60, 90–96 (1999)

    Google Scholar 

  8. J. Zhang, L. Gao, J. Solid State Chem. 177, 1425 (2004)

    Article  ADS  Google Scholar 

  9. S.R. Morrison, Mechanism of semiconductor gas sensor operation. Sens. Actuators 11, 283–7 (1987)

    Article  Google Scholar 

  10. P. Nelli, G. Faglia, G. Sberveglieri, E. Cereda, G. Gabetta, A. Dieguez, A. Romano-Rodriguez, J.R. Morante, The aging effect on \({\rm SnO}_{2}\)-Au thin film sensors: electrical and structural characterization. Thin Solid Films 371, 249–253 (2000)

    Article  ADS  Google Scholar 

  11. N. Yamazoe, Y. Kurokawa, T. Seiyama, Effects of additives on semiconductor gas sensors. Sens. Actuators 4, 283–289 (1983)

    Article  Google Scholar 

  12. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5, 7–19 (1991)

    Article  Google Scholar 

  13. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Stabilization od \({\rm SnO}_{2}\) ultrafine particles by additives. J. Mater. Sci. 27, 963–971 (1992)

    Article  ADS  Google Scholar 

  14. R. Ramamoorthy, M.K. Kennedy, H. Nienhaus, A. Lorke, F.E. Kruis, H. Fissan, Surface oxidation of monodisperse \(SnO_{x}\) nanoparticles. Sens. Actuators B 88, 281–285 (2003)

    Article  Google Scholar 

  15. M. I. Ivanovskaya, P.A. Bogdanov, D.R. Orlik, A.Ch. Gurlo, V.V. Romanovskaya, Structure and properties of sol–gel obtained \(SnO_{2}\) and \(SnO_{2}\)-Pd films. Thin Solid Films. 296, 41–43 (1997)

    Google Scholar 

  16. S. Harbeck, A. Szatvanyi, N. Barsan, U. Weimar, V. Foffmann, DRIFT studies of thick film un-doped and Pd-doped \(SnO_{2}\) sensors: temperature changes effect and CO detection mechanism in the presence of water vapour. Thin Solid Films 436, 76–83 (2003)

    Article  ADS  Google Scholar 

  17. R. K. Joshi, F. E. Kruis, O. Dmitrieva, Gas sensing behavior of \(SnO_{1.8}\): Ag films composed of size-selected nanoparticles, J. Nanoparticle Res. 8, 797–808 (2006)

    Google Scholar 

  18. R. K. Joshi, F. E. Kruis, Size-Selected \(SnO_{1.8}\): Ag Mixed nanoparticle films for ethanol, CO and CH\(_{4}\) detection, J. Nanomaterials ID67072 (2007)

    Google Scholar 

  19. H. Nienhaus, V. Kravets, S. Koutouzov, C. Meier, A. Lorke, H. Wiggers, M. K. Kennedy, F. E. Kruis, Quantum size effect of valence band plasmon energies in Si and \(SnO_{x}\) nanoparticles. J Vac. Sci. Technol. B 24, 1156 (2006)

    Article  Google Scholar 

  20. P. Biswas, R.C. Flagan, High-velocity inertial impactors. Environ. Sci. Technol. 18, 611–616 (1984)

    Article  Google Scholar 

  21. M.K. Kennedy, F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert, G. Dumpich, Tailored Nanoparticle Films from Monosized Tin Oxide Nanocrystals: Particle Synthesis, Film Formation, and Size-dependent Gas-sensing Properties, J. Applied Physics, 93, pp. 551–560, (2003)

    Google Scholar 

  22. M. K. Kennedy, F. E. Kruis, H.Fissan, and B. R. Mehta, Fully Automated, Gas Sensing, and Electronic Parameter Measurement Setup for Miniaturized Nanoparticle Gas Sensors. Rev. Sci. Instrum. 74(11), 4908–15 (2003)

    Google Scholar 

  23. W.S. Hu, Z.G. Liu, J.G. Zheng, X.B. Hu, X.L. Guo, Preparation of nanocrystalline SnO\(_{2}\) thin films used in chemisorption sensors by pulsed laser reactive ablation, J. of Materials Science: Materials in. Electronics 8, 155–158 (1997)

    Google Scholar 

  24. R. Dolbec, M.A. El Khakani, Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO\(_{2}\): Pt based sensors. Appl. Phys. Lett. 90(17), 173114 (2007)

    Article  ADS  Google Scholar 

  25. R. Dolbec, M.A. El Khakani, Pulsed laser deposited platinum and gold nanoparticles as catalysts for enhancing the CO sensitivity of nanostructured \({\rm SnO}_{2}\) sensors. Sens. Lett. 3, 216–221 (2005)

    Article  Google Scholar 

  26. N. Barsan, U. Weimar, Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics 7, 143–167 (2001)

    Article  Google Scholar 

  27. M. Khanuja, S. Kala, B. R. Mehta, F. E. Kruis, Concentration-specific hydrogen sensing behavior in monosized Pd nanoparticle layers, Nanotechnology, 20, 015502 (7 pp) (2009)

    Google Scholar 

  28. G. Heiland, Homogeneous semiconducting gas sensors. Sens. Actuators 2, 434–361 (1982)

    Google Scholar 

  29. J. Watson, K. Ihokura, Coles G.S.V, The tin oxide gas sensor, Measurement Sci. Technol. 4(7), 711–719 (1993)

    Google Scholar 

  30. R.K. Joshi, F.E. Kruis, Influence of Ag particle size on ethanol sansing of \({\rm SnO}_{1.8}\): Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl. Phys. Lett. 89, 153116 (2006)

    Article  ADS  Google Scholar 

  31. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO\(_{2}\)-based elements. Sens. Actuators B 3, 147–155 (1991)

    Article  Google Scholar 

  32. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Correlation between Gas Sensitivity and Crystallite Size in Porous \(SnO_{2}\)-Based Sensors, Chem. Lett. 441–444 (1990)

    Google Scholar 

  33. N. Barsan, Conduction models in gas-sensing SnO\(_{2}\) layers: grain-size effects and ambient atmosphere influence. Sens. Actuators B 17, 241–246 (1994)

    Article  Google Scholar 

  34. B. Gautheron, M. Labeau, G. Delabouglise, U. Schmatz, Undoped and Pd-doped SnO\(_{2}\) thin films for gas sensors. Sens. Actuators B 15–16, 357–362 (1993)

    Article  Google Scholar 

  35. G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 80, 125–131 (2001)

    Article  Google Scholar 

  36. J. Tamaki, Y. Nakataya, S. Konishi, Micro gap effect on dilute \({\rm H}_{2}\)S sensing properties on \({\rm SnO}_{2}\) thin film microsensors. Sens. Actuators B 130, 400–404 (2008)

    Article  Google Scholar 

  37. W. Prost, F.E. Kruis, F. Otten, K. Nielsch, B. Rellinghaus, U. Auer, A. Peled, E.F. Wassermann, H. Fissan, F.J. Tegude, Microelectron. Eng. 41–42, 535 (1998)

    Article  Google Scholar 

  38. Y.-J. Lin, C.-L. Tsai, J. Appl. Phys. 100, 113721 (2006)

    Article  ADS  Google Scholar 

  39. I. Aruna, F.E. Kruis, S. Kundu, M. Muhler, R. Theissmann, M. Spasova, CO ppb sensors based on monodispersed SnO\(_{x}\):Pd mixed nanoparticle layers: Insight into dual conductance response. J. Appl. Phys. 105, 064312 (2009)

    Article  ADS  Google Scholar 

  40. I. Aruna, F. E. Kruis, Temperature dependent sensitivity inversion in SnO1.8: Pd mixed nanoparticle layer based CO sensors, Mater. Res. Soc. Symp. Proc. 1056, HH04-11

    Google Scholar 

  41. F. A. Lewis, The Palladium-Hydrogen System (Academic Press, London, 1967)

    Google Scholar 

  42. J.B. Pelka, M. Brust, P. Glertowski, W. Paszkowicz, N. Schell, Appl. Phys. Lettt. 89, 063110 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nedic, A., Kruis, F.E. (2012). Gas Sensors Based on Well-Defined Nanostructured Thin Films. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_13

Download citation

Publish with us

Policies and ethics