Skip to main content

Abstract

The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the complexity, work on battery scheduling in literature is limited to either small batteries or to very simple loads. In this paper, we present an approach using the Kinetic Battery Model that combines real size batteries with realistic random loads. The results show that, indeed, battery scheduling results in lifetime improvements compared to the sequential useage of the batteries. The improvements mainly depend on the ratio between the average discharge current and the battery capacity. Our results show that for realistic loads one can achieve up to 20% improvements in system lifetime by applying battery scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: Extending lifetime of portable systems by battery scheduling. In: Design, Automation and Test in Europe (DATE), pp. 197–203. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  2. Chiasserini, C., Rao, R.: Energy efficient battery management. IEEE Journal on Selected Areas in Communications 19(7), 1235–1245 (2001)

    Article  Google Scholar 

  3. Cloth, L., Haverkort, B.R., Jongerden, M.R.: Computing battery lifetime distributions. In: Proc. IEEE DSN 2007, pp. 780–789. IEEE Computer Society Press (2007)

    Google Scholar 

  4. Jongerden, M., Haverkort, B., Bohnenkamp, H., Katoen, J.P.: Maximizing system lifetime by battery scheduling. In: Proc. IEEE DSN 2009, pp. 63–72. IEEE Computer Society Press (2009)

    Google Scholar 

  5. Jongerden, M., Mereacre, A., Bohnenkamp, H., Haverkort, B., Katoen, J.P.: Computing optimal schedules for battery usage in embedded systems. IEEE Transactions on Industrial Informatics 6(3), 276–286 (2010)

    Article  Google Scholar 

  6. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Software 3(6), 445–457 (2009)

    Article  Google Scholar 

  7. Jongerden, M., Haverkort, B.: Lifetime improvement by battery scheduling. In: UK Performance Engineering Workshop, Bradford, UK, July 7-8 (2010)

    Google Scholar 

  8. Manwell, J., McGowan, J.: Lead acid battery storage model for hybrid energy systems. Solar Energy 50, 399–405 (1993)

    Article  Google Scholar 

  9. Manwell, J., McGowan, J.: Extension of the kinetic battery model for wind/hybrid power systems. In: Proc. of the 5th European Wind Energy Association Conference (EWEC 1994), pp. 284–289 (1994)

    Google Scholar 

  10. Manwell, J., McGowan, J., Baring-Gould, E., Stein, W., Leotta, A.: Evaluation of battery models for wind/hybrid power system simulation. In: Proc. of the 5th European Wind Energy Association Conference (EWEC 1994), pp. 1182–1187 (1994)

    Google Scholar 

  11. Matsuura, Y.: Low-power consumption reference pulse generator. United States Patent 4,618,837 (1986)

    Google Scholar 

  12. Battery University.com (April 2010), http://www.batteryuniversity.com/partone-24.htm

  13. Low Cost Batteries.com (April 2010), http://www.lowcostbatteries.com/articles.asp?id=107

  14. Wolfram Mathworld Lambert-W Function (April 2010), http://mathworld.wolfram.com/lambertw-function.html

  15. Rakhmatov, D., Vrudhula, S., Wallach, D.A.: Battery lifetime predictions for energy-aware computing. In: Proc. of the 2002 International Symposium on Low Power Electronics and Design (ISLPED 2002), pp. 154–159 (2002)

    Google Scholar 

  16. Rakhmatov, D., Vrudhula, S., Wallach, D.A.: A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Transactions on VLSI Systems 11(6), 1019–1030 (2003)

    Article  Google Scholar 

  17. Sarkar, S., Adamou, M.: A framework for optimal battery management for wireless nodes. In: Proc. IEEE INFOCOM 2002, pp. 179–188 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jongerden, M.R., Haverkort, B.R. (2012). Lifetime Improvement by Battery Scheduling. In: Schmitt, J.B. (eds) Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance. MMB&DFT 2012. Lecture Notes in Computer Science, vol 7201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28540-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28540-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28539-4

  • Online ISBN: 978-3-642-28540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics