Skip to main content

On the Kneser’s Property for the Complex Ginzburg–Landau Equation and the Lotka–Volterra System with Diffusion

  • Chapter
  • First Online:
Evolution Inclusions and Variation Inequalities for Earth Data Processing III

Abstract

As we have seen in the previous chapters when we consider the Cauchy problem of a differential equation and uniqueness fails to hold (or it is not known to hold), then we have to consider a set of solutions corresponding to a given initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball JM (2004) Global attractors for damped semilinear wave equations. Discrete Contin Dyn Syst 10:31–52

    Google Scholar 

  2. Barbu V (1976) Nonlinear semigroups and differential equations in banach spaces. Editura Academiei, Bucuresti

    Google Scholar 

  3. Caraballo T, Langa JA, Melnik VS, Valero J (2003) Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. doi:10.1023/A:1022902802385

    Google Scholar 

  4. Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. American Mathematical Society, Providence RI

    Google Scholar 

  5. Chipot M (2000) Elements of nonlinear analysis. Birkhäuser, Basel

    Google Scholar 

  6. Gajewsky H, Gröger K, Zacharias K (1974) Nichlineare operatorgleichungen und operatordifferentialgleichungen. Akademie, Berlin

    Google Scholar 

  7. Gobbino M, Sardella A (1996) On the connectedness of attractors for dynamical systems. J Differ Equat. doi:10.1006/jdeq.1996.3166

    Google Scholar 

  8. Hartman Ph (2002) Ordinary differential equations. SIAM’s Classics in Applied Mathematics, SIAM, Philadelphia, PA

    Google Scholar 

  9. Henríquez HR (2003) The Kneser property for abstract retarded functional differential equations with infinite delay. Int J Math Math Sci 26:1645–1661

    Google Scholar 

  10. Kaminogo T (1978) Kneser’s property and boundary value problems for some retarded functional differential equations. Tohoku Math J 30:471–486

    Google Scholar 

  11. Kaminogo T (2001) Kneser families in infinite-dimensional spaces. Nonlinear Anal. doi:10.1016/S0362-546X(99)00414-9

    Google Scholar 

  12. Kapustyan AV, Melnik VS, Valero J, Yasinsky VV (2008) Global attractors of multi-valued evolution equations without uniqueness. Naukova Dumka, Kiev

    Google Scholar 

  13. Kapustyan AV, Valero J (2006) On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems. J Math Anal Appl. doi:10.1016/j.jmaa.2005.10.042

    Google Scholar 

  14. Kapustyan AV, Valero J (2009) On the Kneser property for the complex Ginzburg-Landau equation and the Lotka–Volterra system with diffusion. J Math Anal Appl 357:254–272

    Google Scholar 

  15. Kikuchi N (1993) Kneser’s propery for a parabolic partial differential equation. Nonlinear Anal. doi:10.1016/0362-546X(93)90158-O

    Google Scholar 

  16. Kloeden PE, Valero J (2007) The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations. Proc R Soc A 463:1491–1508

    Google Scholar 

  17. Kloeden PE, Valero J (2010) The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete Contin Dyn Syst 28:161–179

    Google Scholar 

  18. Lions JL (1969) Quelques Méthodes de Résolution des Problèmes aux Limites non Linéares. Dunod, Gauthier Villars

    Google Scholar 

  19. Marion M (1987) Attractors for reaction-diffusion equations: existence and estimate of their dimension. Appl Anal 25:101–147

    Google Scholar 

  20. Mielke A (1997) The complex Ginzburg-Landau equation on large and unbounded domains. Nonlinearity. doi:10.1088/0951-7715/10/1/014

    Google Scholar 

  21. Morillas F, Valero J (2005) Attractors for reaction-diffusion equations in R N with continuous nonlinearity. Asympt Anal 44:111–130

    Google Scholar 

  22. Morillas F, Valero J (2009) On the Kneser property for reaction-diffusion systems on unbounded domains. Topol Appl 156:3029–3040

    Google Scholar 

  23. Okazawa N, Yokota T (2002) Monotonicity method applied to the complex Ginzburg-Landau and related equations. J Math Anal Appl doi:10.1006/jmaa.2001.7770

    Google Scholar 

  24. Okazawa N, Yokota T (2002) Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-laplacian. J Differ Equat. doi:10.1006/jdeq.2001.4097

    Google Scholar 

  25. Papageorgiuou NS, Papalini F (1996) On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Acta Math Univ Comenianae 65:33–51

    Google Scholar 

  26. Smoller J (1983) Shock waves and reaction-diffusion equations. Springer, New York

    Google Scholar 

  27. Szufla S (1999) Kneser’s theorem for weak solutions of an mth-order ordinary differential equation in Banach spaces. Nonlinear Anal 38:785–791

    Google Scholar 

  28. Takeuchi S, Asakawa H, Yokota T (2004) Complex Ginzburg-Landau type equations with nonlinear Laplacian, in the Proceedings of the international conference Nonlinear Partial Differential Equations and Their Applications (Shangai, 2003), GAKUTO Int Ser Math Appl 20:315–332

    Google Scholar 

  29. Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York

    Google Scholar 

  30. Temam R (1979) Navier-Stokes equations. North-Holland, Amsterdam

    Google Scholar 

  31. Tolstonogov AA, Umansky YI (1992) On solutions of evolution inclusions. 2. Sibirsk Mat Zh. 33:163–173

    Google Scholar 

  32. Valero J (2005) On the kneser property for some parabolic problems. Topology Appl 153:975–989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V. (2012). On the Kneser’s Property for the Complex Ginzburg–Landau Equation and the Lotka–Volterra System with Diffusion. In: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Advances in Mechanics and Mathematics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28512-7_5

Download citation

Publish with us

Policies and ethics