Skip to main content

Abstract

A lot of processes coming from Physics, Chemistry, Biology, Economy, and other sciences can be described using systems of reaction-diffusion equations. In this chapter, we study the asymptotic behavior of the solutions of a system of infinite ordinary differential equations (a lattice dynamical system) obtained after the spacial discretization of a system of reaction-diffusion equations in an unbounded domain. This kind of dynamical systems is then of importance in the numerical approximations of physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah AY (2005) Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete Contin Dyn Syst. doi:10.3934/dcdsb.2005.5.899

    Google Scholar 

  2. Ball JM (2000) Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. In Mechanics: from Theory to Computation. Springer, New York, pp 447–474

    Google Scholar 

  3. Bates PW, Lu K, Wang B (2001) Attractors for lattice dynamical systems. Int J Bifurcat Chaos. doi:10.1142/S0218127401002031

    Google Scholar 

  4. Bell J (1981) Some threshold results for models of myelinated nerves. Math Biosci 54:181–190

    Google Scholar 

  5. Beyn WJ, Pilyugin SYu (2003) Attractors of reaction diffusion systems on infinite lattices. J Dynam Differ Equat. doi:10.1023/B:JODY.0000009745.41889.30

    Google Scholar 

  6. Cellina A (1971) On the existence of solutions of ordinary differential equations in Banach spaces. Funkcialaj Ekvacioj 14:129–136

    Google Scholar 

  7. Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. American Mathematical Society, Providence

    Google Scholar 

  8. Cheskidov A, Foias C (2007) On global attractors of the 3D Navier-Stokes equations. J Differ Equat. doi:10.1016/j.jde.2006.08.021

    Google Scholar 

  9. Chow SN, Mallet-Paret J (1995) Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans Circ Syst. doi:10.1.1.45.8359

    Google Scholar 

  10. Chua LO, Yang Y (1998) Cellular neural networks: applications. IEEE Trans Circ Sys 1:1273–1290

    Google Scholar 

  11. Dunford N, Schwartz JT (1998) Linear operators, Part I. Wiley, NewYork

    Google Scholar 

  12. Erneux T, Nicolis G (1993) Propagating waves in discrete bistable reaction diffusion systems. Phys D. doi:10.1016/0167-2789(93)90208-I

    Google Scholar 

  13. Godunov AN (1975) Peano’s theorem in Banach spaces. Funct Anal Appl. doi:10.1007/BF01078180

    Google Scholar 

  14. Kapral R (1991) Discrete models for chemically reacting systems. J Math Chem. doi:10.1007/BF01192578

    Google Scholar 

  15. Kapustyan AV, Melnik VS, Valero J (2007) A weak attractor and properties of solutions for the three-dimensional Bénard problem. Discrete Contin Dyn Syst. doi:10.3934/dcds.2007.18.449

    Google Scholar 

  16. Kapustyan AV, Valero J (2006) On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems. J Math Anal Appl. doi:10.1016/j.jmaa.2005.10.042

    Google Scholar 

  17. Kapustyan AV, Valero J (2007) Weak and strong attractors for the 3D Navier-Stokes system. J Differ Equat. doi:10.1016/j.jde.2007.06.008

    Google Scholar 

  18. Karachalios NI, Yannacopoulos AN (2005) Global existence and compact attractors for the discrete nonlinear Schrödinger equations. J Differ Equat. doi:10.1016/j.jde.2005.06.002

    Google Scholar 

  19. Kato S (1976) On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces. Funkcialaj Ekvacioj 19:239–245

    Google Scholar 

  20. Li X, Wang D (2007) Attractors for partly dissipative lattice dynamic systems in weighted spaces. J Math Anal Appl. doi:10.1016/j.jmaa.2006.01.054

    Google Scholar 

  21. Li X, Zhong Ch (2005) Attractors for partly dissipative lattice dynamic systems in l 2 ×l 2. J Comput Appl Math. doi:10.1016/j.cam.2004.09.014

    Google Scholar 

  22. Morillas F, Valero J (2005) Attractors for reaction-diffusion equations in R N with continuous nonlinearity. Asymptot Anal 44:111–130

    Google Scholar 

  23. Morillas F, Valero J (2009) A Peano’s theorem and attractors for lattice dynamical systems. Int J Bifurcat Chaos 19:557–578

    Google Scholar 

  24. Rosa R (2006) Asymptotic regularity conditions for the strong convergence towards weak limit set and weak attractors of the 3D Navier-Stokes equations. J Differ Equat. doi:10.1016/j.jde.2006.03.004

    Google Scholar 

  25. Sell G (1996) Global attractors for the three-dimensional Navier-Stokes equations. J Dynam Differ Equat. doi:10.1007/BF02218613

    Google Scholar 

  26. Swierniak A (1976) Generalization of Peano’s and Osgood’s theorems on differential equations in Banach spaces. Zesz Nauk Politech Slak 560:263–264

    Google Scholar 

  27. Van Vleck E, Wang B (2005) Attractors for lattice Fitz-Hugh-Nagumo systems. Phys D. doi:10.1016/j.physd.2005.10.006

    Google Scholar 

  28. Wang B (2006) Dynamics of systems on infinite lattices. J Differ Equat. doi:10.1016/j.jde.2005.01.003

    Google Scholar 

  29. Wang B (2007) Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl. doi:10.1016/j.jmaa.2006.08.070

    Google Scholar 

  30. Zhao C, Zhou Sh (2007) Limiting behaviour of a global attractor for lattice nonclassical parabolic equations. Appl Math Lett. doi:10.1016/j.aml.2006.06.019

    Google Scholar 

  31. Zhou S (2002) Attractors for lattice systems corresponding to evolution equations. Nonlinearity. doi:10.1088/0951-7715/15/4/307

    Google Scholar 

  32. Zhou S (2003) Attractors for first order dissipative lattice dynamical systems. Phys D. doi:10.1016/S0167-2789(02)00807-2

    Google Scholar 

  33. Zhou S (2004) Attractors and approximations for lattice dynamical systems. J Differ Equat. doi:10.1016/j.jde.2004.02.005

    Google Scholar 

  34. Zhou S, Shi W (2006) Attractors and dimension of dissipative lattice systems. J Differ Equat. doi:10.1016/j.jde.2005.06.024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V. (2012). Attractors for Lattice Dynamical Systems. In: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Advances in Mechanics and Mathematics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28512-7_3

Download citation

Publish with us

Policies and ethics