Skip to main content

Chemical Ecology of Seaweeds

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

This chapter summarizes the breadth of seaweed chemical ecology. Sensory chemical ecology includes chemical communication within and between species, whether intentional or not, as well as seaweed spores sensing their chemical and physicochemical environment during and preceding settlement. Defensive chemical ecology includes chemical defenses mounted against predators, pathogens, biofoulers (epibionts), and competitors. Such defenses can be produced constitutively or in some cases their production can be increased when the seaweed is attacked. Most commonly the defensive compounds are organic molecules but reactive oxygen species are also important in defenses against pathogens. In some seaweeds, sensory and defensive aspects overlap as waterborne chemical cues released by seaweeds when under attack by herbivores can induce defenses in neighboring algae and attract predators of the herbivores. Defenses against biofoulers can also involve interfering with chemical communications between biofilm bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Amsler CD (2008a) Algal chemical ecology. Springer, Berlin, p xviii, 313

    Book  Google Scholar 

  • Amsler CD (2008b) Algal sensory chemical ecology. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 297–309

    Chapter  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    Article  CAS  Google Scholar 

  • Amsler CD, Iken KB (2001) Chemokinesis and chemotaxis in marine bacteria and algae. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, FL, pp 413–430

    Google Scholar 

  • Amsler CD, Neushul M (1989) Chemotactic effects of nutrients on spores of the kelps Macrocystis pyrifera and Pterygophora californica. Mar Biol 102:557–564

    Article  CAS  Google Scholar 

  • Amsler CD, Neushul M (1990) Nutrient stimulation of spore settlement in the kelps Pterygophora californica and Macrocystis pyrifera. Mar Biol 107:297–304

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Baker BJ (2009b) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545

    Article  CAS  Google Scholar 

  • Baumgartner FA, Motti CA, de Nys R, Paul NA (2009) Feeding preferences and host associations of specialist marine herbivores align with quantitative variation in seaweed secondary metabolites. Mar Ecol Prog Ser 396:1–12

    Article  CAS  Google Scholar 

  • Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  PubMed  CAS  Google Scholar 

  • Callow ME, Callow JA, Ista LK, Coleman SE, Nolasco AC, Lopez GP (2000) Use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion processes of green algal (Enteromorpha) zoospores. Appl Environ Microbiol 66:3249–3254

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chaudhury MK, Daniel S, Callow ME, Callow JA, Finlay JA (2006) Settlement behavior of swimming algal spores on gradient surfaces. Biointerphases 1:18–21

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Camara M (2005) Extracellular communication in bacteria. Top Curr Chem 240:279–315

    CAS  Google Scholar 

  • Coleman R, Ramchunder S, Davis K, Moody A, Foggo A (2007a) Herbivore-induced infochemicals influence foraging behaviour in two intertidal predators. Oecologia 151:454–463

    Article  PubMed  Google Scholar 

  • Coleman RA, Ramchunder SJ, Moody AJ, Foggo A (2007b) An enzyme in snail saliva induces herbivore-resistance in a marine alga. Funct Ecol 21:101–106

    Article  Google Scholar 

  • Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73:483–506

    Article  Google Scholar 

  • de Nys R, Coll JC, Price IR (1991) Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar Biol 108:315–320

    Article  Google Scholar 

  • de Nys R, Wright AD, Konig GM, Sticher O (1993) New halogenated furanones from the marine alga Delisea pulchra (cf. fimbriata). Tetrahedron 49:11213–11220

    Article  Google Scholar 

  • Dworjanyn SA, de Nys R, Steinberg PD (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar Biol 133:727–736

    Article  CAS  Google Scholar 

  • Dworjanyn SA, de Nys R, Steinberg PD (2006a) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163

    Article  CAS  Google Scholar 

  • Dworjanyn SA, Wright JT, Paul NA, de Nys R, Steinberg PD (2006b) Cost of chemical defence in the red alga Delisea pulchra. Oikos 113:13–22

    Article  CAS  Google Scholar 

  • Fukuhara Y, Mizuta H, Yasui H (2002) Swimming activities of zoospores in Laminaria japonica (Phaeophyceae). Fish Sci 68:1173–1181

    Article  CAS  Google Scholar 

  • Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–300

    Article  CAS  Google Scholar 

  • Greer SP, Amsler CD (2002) Light boundaries and the coupled effects of surface hydrophobicity and light on spore settlement in the brown alga Hincksia irregularis (Phaeophyceae). J Phycol 38:116–124

    Article  Google Scholar 

  • Greer SP, Amsler CD (2004) Clonal variation in phototaxis and settlement behaviors of Hincksia irregularis (Phaeophyceae) spores. J Phycol 40:44–53

    Article  Google Scholar 

  • Greer SP, Iken KB, McClintock JB, Amsler CD (2003) Individual and coupled effects of echinoderm extracts and surface hydrophobicity on spore settlement and germination in the brown alga Hincksia irregularis. Biofouling 19:315–326

    Article  PubMed  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Harder T, Dobretsov S, Qian P-Y (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141

    Article  CAS  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Article  Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffmann F, Pavia H, Potin P, Poulet SA, Toth G (2006) New trends in marine chemical ecology. Est Coast 29:531–551

    CAS  Google Scholar 

  • Joint I, Callow ME, Callow JA, Clarke KR (2000) The attachment of Enteromorpha zoospores to a bacterial biofilm assemblage. Biofouling 16:151–158

    Article  Google Scholar 

  • Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207

    Article  PubMed  Google Scholar 

  • Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 57–89

    Chapter  Google Scholar 

  • Jung V, Pohnert G (2001) Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57:7169–7172

    Article  CAS  Google Scholar 

  • Jung V, Thibaut T, Meinesz A, Pohnert G (2002) Comparison of the wound-activated transformation of caulerpenyne by invasive and noninvasive Caulerpa species of the Mediterranean. J Chem Ecol 28:2091–2105

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M, de Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13:85–93

    Article  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: A targeted chemical defense against marine fungi. Proc Nat Acad Sci USA 100:6916–6921

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 229–243

    Chapter  Google Scholar 

  • Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Nat Acad Sci USA 106:7314–7319

    Article  PubMed Central  PubMed  Google Scholar 

  • Maier I (1982) New aspects of pheromone-triggered spermatozoid release in Laminaria digitata (Phaeophyta). Protoplasma 113:137–142

    Article  CAS  Google Scholar 

  • Maier I (1995) Brown algal pheromones. Prog Phycol Res 11:51–102

    CAS  Google Scholar 

  • Maier I, Müller DG (1986) Sexual pheromones in algae. Biol Bull 170:145–175

    Article  CAS  Google Scholar 

  • Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 1–24

    Chapter  Google Scholar 

  • Maximilien R, de Nys R, Holmstr”m C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg P (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246

    Article  Google Scholar 

  • Müller DG (1967) Ein leichtflüchtiges Gyno-Gamon der Braunalge Ectocarpus siliculosus. Naturwissenschaften 54:496–497

    Article  PubMed  Google Scholar 

  • Müller DG (1968) Versuche zur Charakterisierung eines Sexuallockstoffes bei der Braunalge Ectocarpus siliculosus. I. Methoden, Isolierung, und gaschromatographischer Nachweis. Planta 81:160–168

    Article  PubMed  Google Scholar 

  • Müller DG (1978) Locomotive responses of male gametes to the species-specific sex attractant of Ectocarpus siliculosus (Phaeophyta). Arch Protistenkd 120:371–377

    Article  Google Scholar 

  • Müller DG (1989) The role of pheromones in sexual reproduction of brown algae. In: Coleman AW, Goff LJ, Stein-Taylor JR (eds) Algae as experimental systems. Alan R Liss, New York, pp 201–213

    Google Scholar 

  • Nylund GM, Cervin G, Persson F, Hermansson M, Steinberg PD, Pavia H (2008) Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonisation. Mar Ecol Prog Ser 369:39–50

    Article  CAS  Google Scholar 

  • Paul VJ, Van Alstyne KL (1992) Activation of chemical defenses in the tropical green algae Halimeda spp. J Exp Mar Biol Ecol 160:191–203

    Article  CAS  Google Scholar 

  • Paul VJ, Ritson-Williams R, Sharp K (2011) Marine chemical ecology in benthic environments. Nat Prod Rep 28:345–387

    Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Article  Google Scholar 

  • Pavia H, Toth GB (2008) Macroalgal models in testing and extending defense theories. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 147–172

    Chapter  Google Scholar 

  • Pereira RC, da Gama BAP (2008) Macroalgal chemical defenses and their roles in structuring tropical marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 25–55

    Chapter  Google Scholar 

  • Pohnert G (2004) Chemical defense strategies of marine organisms. Top Curr Chem 239:179–219

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    Article  PubMed  CAS  Google Scholar 

  • Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 245–271

    Chapter  Google Scholar 

  • Provasoli L, Pinter IJ (1980) Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca. J Phycol 16:196–201

    Article  Google Scholar 

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Nat Acad Sci USA 107:9683–9688

    Article  PubMed Central  PubMed  Google Scholar 

  • Rohde S, Wahl M (2008) Antifeeding defense in baltic macroalgae: induction by direct grazing versus waterborne cues. J Phycol 44:85–90

    Article  Google Scholar 

  • Rohde S, Molis M, Wahl M (2004) Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–1018

    Article  Google Scholar 

  • Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123

    Article  Google Scholar 

  • Sekimoto H (2005) Plant sex pheromones. Vitamins Hormones 72:457–478

    Article  PubMed  CAS  Google Scholar 

  • Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE (2009) The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr Comp Biol 49:291–313

    Article  PubMed  CAS  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629

    Article  CAS  Google Scholar 

  • Tait K, Joint I, Daykin M, Milton DL, Williams P, Camara M (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240

    Article  PubMed  CAS  Google Scholar 

  • Thomas RWSP, Allsopp D (1983) The effects of certain periphytic marine bacteria upon the settlement and growth of Enteromorpha, a fouling alga. In: Oxley TA, Barry S (eds) Biodeterioration 5. Wiley, New York, pp 348–357

    Google Scholar 

  • Toth G (2007) Screening for induced herbivore resistance in Swedish intertidal seaweeds. Mar Biol 151:1597–1604

    Article  Google Scholar 

  • Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc Nat Acad Sci USA 97:14418–14420

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Alstyne KL (2008) Ecological and physiological roles of dimethylsulfoniopropionate and its products in marine macroalgae. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 173–194

    Chapter  Google Scholar 

  • Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302

    Article  PubMed  CAS  Google Scholar 

  • Weinberger F, Richard C, Kloareg B, Kashman Y, Hoppe HG, Friedlander M (2001) Structure-activity relationships of oligoagar elicitors toward Gracilaria conferta (Rhodophyta). J Phycol 37:418–426

    Article  CAS  Google Scholar 

  • Weinberger F, Beltran J, Correa JA, Lion U, Pohnert G, Kumar N, Steinberg P, Kloareg B, Potin P (2007) Spore release in Acrochaetium sp (Rhodophyta) is bacterially controlled. J Phycol 43:235–241

    Article  Google Scholar 

  • Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I (2006) Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–618

    Article  PubMed  CAS  Google Scholar 

  • Wright JT, de Nys R, Poore AGB, Steinberg PD (2004) Chemical defense in a marine alga: Heritability and the potential for selection by herbivores. Ecology 85:2946–2959

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to M. Amsler, K. Iken, J. McClintock, G. Pohnert, and an anonymous reviewer for helpful comments on earlier drafts of this chapter. Manuscript preparation was supported in part by National Science Foundation award ANT-0838773 from the Antarctic Organisms and Ecosystems program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Amsler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amsler, C.D. (2012). Chemical Ecology of Seaweeds. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_9

Download citation

Publish with us

Policies and ethics