Skip to main content

Environment and Algal Nutrition

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

In this chapter, algal nutrient dynamics are considered from an ecophysiological viewpoint in which different resource acquisition mechanisms of algae facing different environmental conditions are reviewed in order to better understand how they meet their nutritional needs. C is considered as “just another nutrient” since it shares many characteristics with the rest of major nutrients. In this contribution, the relationship between algal nutrition and their environment is considered, including the physical aspects such as water movements and seasonality. Nutrient availability is discussed in terms of environmental conditioning of N and P supply for storage and growth, and different species-specific metabolic strategies are presented. Mechanisms presented include switching the photosynthetic energy investment from C to N and P acquisition during the course of the day, or from summer to winter. Different mechanisms of resource utilization, such as the preferential use of ammonium over nitrate, in some but not all species, allow for the different species to coexist at the same time in the same community, and this strategy of partitioning brings a more effective resource use, i.e., better transfer to the whole food web. The use of isotope discrimination as a source marker and the application of nutrient removal by seaweeds are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar AB, Morgan JA, Teichberg M, Fox S, Valiela I (2003) Transplantation and isotopic evidence of the relative effects of ambient an internal nutrient supply on the growth of Ulva lactuca. Biol Bull 205:250–251

    CAS  PubMed  Google Scholar 

  • Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord II. Pigment accumulation and biochemical defense systems against high light stress. Mar Biol 140:1097–1106

    Google Scholar 

  • Andría JR, Pérez-Lloréns JL, Vergara JJ (1999) Mechanisms of inorganic carbon acquisition in Gracilaria gaditana nom. prov. (Rhodophyta). Planta 208:564–573

    Google Scholar 

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574

    CAS  Google Scholar 

  • Baird ME, Atkinson MJ (1997) Measurement and prediction of mass transfer to experimental coral reef communities. Limnol Oceanogr 42:1685–1693

    Google Scholar 

  • Baird M, Middleton J (2004) On relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants. J Mar Syst 49:169–175

    Google Scholar 

  • Barile PJ (2004) Evidence of anthropogenic nitrogen enrichment of the littoral waters of east central Florida. J Coast Res 20:1237–1245

    Google Scholar 

  • Berges J (1997) Algal nitrate reductases. Eur J Phycol 32:3–8

    Google Scholar 

  • Berges JA, Cochlan WP, Harrison PJ (1995) Laboratory and field responses of algal nitrate reductase to diel periodicity in irradiance, nitrate exhaustion, and the presence of ammonium. Mar Ecol Prog Ser 124:259–269

    CAS  Google Scholar 

  • Bilger RW, Atkinson MJ (1995) Effects of nutrient loading on mass-transfer rates to a coral community. Limnol Oceanogr 40:279–289

    CAS  Google Scholar 

  • Björnsäter BR, Wheeler PA (1990) Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestra and Enteromorpha intestinalis (Ulvales, Chlorophyta). J Phycol 26:603–611

    Google Scholar 

  • Borum J, Sand-Jensen K (1996) Is total primary production in shallow coastal marine waters stimulated by nitrogen loading? Oikos 76:406–410

    Google Scholar 

  • Bracken MES, Nielsen KJ (2004) Diversity of intertidal macroalgae increases with nutrient loading by invertebrates. Ecology 85:2828–2836

    Google Scholar 

  • Bracken M, Stachowicz J (2006) Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87:2397–2403

    PubMed  Google Scholar 

  • Brown MT, Nyman MA, Keogh JA, Chin NKM (1997) Seasonal growth of the giant kelp Macrocystis pyrifera in New Zealand. Mar Biol 129:417–424

    Google Scholar 

  • Chapman ARO, Lindley JE (1980) Seasonal growth of Laminaria solidungula in the Canadian high arctic in relation to irradiance and dissolved nutrients concentrations. Mar Biol 57:1–5

    CAS  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. J Phycol 37:975–986

    Google Scholar 

  • Cifuentes LA, Sharp JH, Fogel ML (1998) Stable carbon and nitrogen isotope biogeochemistry in Delaware estuary. Limnol Oceanog 33:1102–1115

    Google Scholar 

  • Cohen RA, Fong P (2004) Nitrogen uptake and assimilation in Enteromorpha intestinalis: using 15 N to determine preference during simultaneous pulses of nitrate and ammonium. J Exp Mar Biol Ecol 309:67–77

    CAS  Google Scholar 

  • Cohen R, Fong P (2005) Experimental evidence supports the use of δ15N content of the opportunistic green macroalga Enteromorpha intestinalis (Chlorophyta) to determine nitrogen sources to estuaries. J Phycol 41:287–293

    CAS  Google Scholar 

  • Cole ML, Valiela I, Kroeger KD, Tomasky GL, Cebrian J, Wigand C, McKinney RA, Grady SP, Carvalho de Silva MH (2004) Assessment of a ∂15 N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. J Environ Qual 33:124–132

    CAS  PubMed  Google Scholar 

  • Collos Y, Vaquer A, Bibent B, Slawyk G, García N, Souchu P (1997) Variability in nitrate uptake kinetics of phyto- plankton communities in a Mediterranean coastal lagoon. Estuar Coast Shelf Sci 44:369–375

    CAS  Google Scholar 

  • DeBoer JA (1981) Nutrients. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Denny MW (1990) Terrestrial versus aquatic biology: the medium and its message. Am Zool 30:111–121

    Google Scholar 

  • Denny MW (1993) Air and water. Princeton University Press, NJ, USA

    Google Scholar 

  • Deutsch B, Voss M (2006) Anthropogenic nitrogen input traced by means of ∂15 N values in macroalgae: results from in-situ incubation experiments. Sci Total Environ 366:799–808

    CAS  PubMed  Google Scholar 

  • Dickman EM, Newell JM, Gonzalez MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Nat Acad Sci 105:18408–18412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    CAS  Google Scholar 

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31:262–277

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Let 10:1135–1142

    Google Scholar 

  • Falkowski PA (1975) Nitrate uptake in marine phytoplankton: comparison of half-saturation constants from seven species. Limnol Oceanogr 20:412–416

    CAS  Google Scholar 

  • Falkowski PG (2000) Rationalizing elemental ratios in unicellular algae. J Phycol 36:3–6

    CAS  Google Scholar 

  • Flower EM, Neori A (2008) Effect of water aeration and nutrient load level on biomass yield. N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J Appl Phycol. doi:10.1007/s10811-007-9300-6

  • Flynn KJ, Marshall H, Geider RJ (2001) A comparison of two N-irradiance interaction models of phytoplankton growth. Limnol Oceanogr 46:1794–1802

    Google Scholar 

  • Fong P, Kamer K, Boyer KE, Boyle KA (2001) Nutrient content of macroalgae with differing morphologies may indicate sources of nutrients for tropical marine systems. Mar Ecol Prog Ser 220:137–152

    CAS  Google Scholar 

  • Fong P, Boyer KE, Kamer K, Boyle KA (2003) Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions. Mar Ecol Prog Ser 262:111–123

    Google Scholar 

  • Fujita RM (1985) The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J Exp Mar Biol Ecol 92:283–301

    CAS  Google Scholar 

  • Gaylord B, Blanchette CA, Denny MW (1994) Mechanical consequences of size in wave-swept algae. Ecol Monogr 64:287–313

    Google Scholar 

  • Gerard VA, Mann KH (1979) Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J Phycol 15:33–41

    Google Scholar 

  • Gevaert F, Barr NG, Rees TAV (2007) Diurnal cycle and kinetics of ammonium assimilation in the green alga Ulva pertusa. Mar Biol 151:1517–1524

    CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    CAS  PubMed  Google Scholar 

  • Gordillo F, Dring M, Savidge G (2002) Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Mar Ecol Prog Ser 234:111–118

    CAS  Google Scholar 

  • Gordillo F, Figueroa F, Niell F (2003) Photon-and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–322

    CAS  PubMed  Google Scholar 

  • Gordillo FJL, Aguilera J, Jiménez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671

    CAS  PubMed  Google Scholar 

  • Harrison PJ, Druehl LD, Lloyd KE, Thompson PA (1986) Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales, Phaeophyta). Mar Biol 93:29–35

    CAS  Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    CAS  Google Scholar 

  • Hein M, Pedersen MF, Sand-Jensen K (1995) Size dependent nitrogen uptake in micro and macroalgae. Mar Ecol Prog Ser 118:247–253

    Google Scholar 

  • Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen and pigment content in Laminaria solidungula and Laminaria saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331

    Google Scholar 

  • Henley WJ, Dunton KH (1997) Effects of nitrogen supply and continuous darkness on growth and photosynthesis of the Arctic kelp Laminaria solidungula. Limnol Oceanogr 42:209–216

    CAS  Google Scholar 

  • Hernández I, Martinez-Aragón JF, Pérez-Llorens JL, Vázquez R, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1 Phosphate. J Appl Phycol 14:365–374

    Google Scholar 

  • Hernández I, Pérez-Pastor A, Vergara JJ, Martínez-Aragón JF, Fernández-Engo MA, Pérez-Llorens JL (2006) Studies on the biofiltration capacity of Gracilariopsis longissima: from micro- scale to macroscale. Aquaculture 252:43–53

    Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    CAS  Google Scholar 

  • Howarth RW, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of coastal rivers, bays, and seas. Iss Ecol 7:1–15

    Google Scholar 

  • Hurd C (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36:453–472

    CAS  Google Scholar 

  • Hurd CL, Dring MJ (1990) Phosphate uptake by intertidal algae in relation to zonation and season. Mar Biol 107:281–289

    Google Scholar 

  • Hurd CL, Durante KM, Chia FS, Harrison PJ (1994) Effect of bryozoan colonization on inorganic nitrogen acquisition by the kelps Agarum fimbriatum and Macrocystis integrifolia. Mar Biol 121:167–173

    Google Scholar 

  • Johnson KS (1982) Carbon dioxide hydration and dehydration kinetics in seawater. Limnol Oceanogr 27:849–855

    CAS  Google Scholar 

  • Jones AB, Dennison WC, Preston NP (2001) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193:155–178

    Google Scholar 

  • Kamer K, Fong P, Kennison RL, Schiff K (2004) The relative importance of sediment and water column supplies of nutrients to the growth and tissue nutrient content of the green macroalga Enteromorpha intestinalis along an estuarine resource gradient. Aquatic Ecol 38:45–56

    CAS  Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Waern M (1986) Decreased depth penetration of Fucus vesiculosus (L.) since the 1940’s indicates eutrophication of the Baltic Sea. Mar Ecol Prog Ser 28:1–8

    Google Scholar 

  • Keller P, Paerl H (1980) Physiological adaptation and response to environmental stress during an N2 fixing Anabaena bloom. Appl Environ Microbiol 40:587–595

    Google Scholar 

  • Koch EW (1993) The effect of water flow on photosynthetic processes of the alga Ulva lactuca L. Hydrobiology 260(261):457–462

    Google Scholar 

  • Korb RE, Gerard VA (2000) Nitrogen assimilation characteristics of polar seaweeds from differing nutrient environment. Mar Ecol Prog Ser 198:83–92

    Google Scholar 

  • Krogmann DW, Jagendorf AT, Avron M (1959) Uncouplers of spinach chloroplast photosynthetic phosphorylation. Plant Physiol 34:272–277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lapointe BE (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308:23–58

    Google Scholar 

  • Lapointe B, Bedford B (2010) Ecology and nutrition of invasive Caulerpa brachypus f. parvifolia blooms on coral reefs off southeast Florida, USA. Harmful Algae 9:1–12

    CAS  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuar 15:75–82

    CAS  Google Scholar 

  • Larned ST (1998) Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Mar Biol 132:409–421

    Google Scholar 

  • Larned ST, Atkinson MJ (1997) Effects of water velocity on NH4 and PO4 uptake and nutrient-limited growth in the macroalga Dictyosphaeria cavernosa. Mar Ecol Prog Ser 157:295–302

    CAS  Google Scholar 

  • Lartigue J, Sherman TD (2006) A Field Study of Nitrogen Storage and Nitrate Reductase Activity in the Estuarine Macroalgae Enteromorpha lingulata (Chlorophyceae) and Gelidium pusillum (Rhodophyceae). Estuar Coast 29:699–708

    CAS  Google Scholar 

  • Lavery PS, McComb AJ (1991) The nutritional ecophysiology of Chaetomorpha linum and Ulva rigida in Peel inlet, Western Australia. Bot Mar 34:251–260

    CAS  Google Scholar 

  • Lean DRS, Murphy TP, Pick FR (1982) Photosynthetic response of lake plankton to combined nitrogen enrichment. J Phycol 18:509–521

    CAS  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, New York

    Google Scholar 

  • Lomas MW, Glibert PM (1999) Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44:556–572

    CAS  Google Scholar 

  • Lombardi JV, Marques HLA, Pereira R, Lima T, Barreto OJS, Paula EJ (2006) Cage polyculture of the Pacific white shrimp Litopenaeus vannamei and the Philippines seaweed Kappaphycus alvarezii. Aquaculture 258:412–425

    Google Scholar 

  • Lotze HK, Schramm W (2000) Ecophysiological traits explain species dominance patterns in macroalgal blooms. J Phycol 36:287–295

    CAS  Google Scholar 

  • Lourenço S, Barbarino E, Nascimento A, Paranhos R (2005) Seasonal variations in tissue nitrogen and phosphorus of eight macroalgae from a tropical hypersaline coastal environment. Crypt Algol 26:355–371

    Google Scholar 

  • Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot Act 104:157–162

    Google Scholar 

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Google Scholar 

  • Mata L, Silva J, Schuenhoff A, Santos R (2006) The effects of light and temperature on the photosynthesis of Asparagopsis armata tetrasporophyte (Falkenbergia rufolanosa), cultivated in tanks. Aquaculture 252:12–19. doi:10.1016/j.aquaculture.2005.11.045

    CAS  Google Scholar 

  • McGlathery KJ, Marino R, Howarth RW (1994) Variable rates of phosphate-uptake by shallow marine carbonate sediments-mechanisms andecological significance. Biogeochem 25:127–146

    CAS  Google Scholar 

  • McGlathery KJ, Pedersen MF, Borum J (1996) Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J Phycol 32:393–401

    CAS  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    CAS  PubMed  Google Scholar 

  • McKinney RA, Nelson WG, Charpentier MA, Wigand C (2001) Ribbed mussel nitrogen isotope signatures reflect nitrogen sources in coastal salt marshes. Ecol Appl 11:203–214

    Google Scholar 

  • Mercado JM, Carmona R, Niell FX (1998) Bryozoans increase available CO2 for photosynthesis in Gelidium sesquipedale (Rhodophyceae). J Phycol 34:925–927

    Google Scholar 

  • Muñoz J, Cancino JM, Molina MX (1991) Effect of encrusting bryozoans on the physiology of their algal substratum. J Mar Biol Ass UK 71:877–882

    Google Scholar 

  • Murthy MS, Rao AS, Reddy ER (1986) Dynamics of nitrate reductase activity in two intertidal algae under desiccation. Bot Mar 29:471–474

    CAS  Google Scholar 

  • Naldi M, Wheeler PA (1999) Changes in nitrogen pool in Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J Phycol 35:70–77

    CAS  Google Scholar 

  • Naldi M, Wheeler PA (2002) N-15 measurements of ammonium and nitrate uptake by Ulva fenestrata (chlorophyta) and Gracilaria pacifica (rhodophyta): Comparison of net nutrient disappearance, release of ammonium and nitrate, and N-15 accumulation in algal tissue. J Phycol 38:135–144

    Google Scholar 

  • Neori A (2008) Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. J Appl Phycol 20:567–570. doi:10.1007/s10811-007-9206-3

    Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C et al (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern maricultura. Aquaculture 231:361–391

    Google Scholar 

  • Nishihara GN, Terada R, Noro T (2005) Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales). J Appl Phycol 17:371–377

    CAS  Google Scholar 

  • Nixon SW, Pilson MEQ (1983) Nitrogen in estuarine and coastal marine ecosystems. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic, New York

    Google Scholar 

  • Oviatt C, Doering P, Nowicki B, Reed L, Cole J, Frithsen J (1995) An ecosystem level experiment on nutrient limitation in temperate coastal marine environments. Mar Ecol Prog Ser 116:171–179

    Google Scholar 

  • Page HM (1995) Variation in the natural abundance of 15 N in the halophyte, Salicornia virginica, associated with groundwater subsidies of nitrogen in a southern California salt marsh. Oecology 104:181–188

    Google Scholar 

  • Pedersen MF, Borum J (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser 142:261–272

    CAS  Google Scholar 

  • Pedersen M, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Google Scholar 

  • Pedersen M, Borum J, Fotel F (2010) Phosphorus dynamics and limitation of fast-and slow-growing temperate seaweeds in Oslofjord, Norway. Mar Ecol Prog Ser 399:103–115

    CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Google Scholar 

  • Phillips JC, Hurd CL (2003) Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Mar Ecol Prog Ser 264:31–48

    Google Scholar 

  • Phillips JC, Hurd CL (2004) Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand. J Phycol 40:534–545

    CAS  Google Scholar 

  • Probyn TA, Chapman ARO (1983) Summer growth of Chordaria flagelliformis (O. F. Muell.) C. Ag.: physiological strategies in a nutrient stressed environment. J Exp Mar Biol Ecol 73:243–271

    Google Scholar 

  • Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New York

    Google Scholar 

  • Raven JA, Kübler JE (2002) New light on the scaling of metabolic rate with the size of algae. J Phycol 38:11–16

    Google Scholar 

  • Raven J, Giordano M, Beardall J (2008) Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiol Plant 133:4–14

    CAS  PubMed  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill N (ed) In the sea, 2nd edn. Wiley, New York

    Google Scholar 

  • Redinbaugh MG, Campbell WH (1991) Higher plant responses to environmental nitrate. Physiol Plant 82:640–650

    CAS  Google Scholar 

  • Rees TAV (2003) Safety factors and nutrient uptake by seaweeds. Mar Ecol Prog Ser 263:29–42

    Google Scholar 

  • Rees TAV (2007) Metabolic and ecological constraints imposed by similar rates of ammonium and nitrate uptake per unit surface area at low substrate concentrations in marine phytoplankton and macroalgae. J Phycol 43:197–207

    CAS  Google Scholar 

  • Ritchie RJ (1987) The permeability of ammonia, methylamine and ethylamine in the charophyte Chara corallina (C. australis). J Exp Bot 38:67–76

    CAS  Google Scholar 

  • Ritchie RJ, Gibson J (1987) Permeability of ammonia, methylamine and ethylamine in the cyanobacterium Synechococcus R-2 (Anacystis nidulans). J Membr Biol 95:131–142

    CAS  Google Scholar 

  • Runcie JW, Ritchie RJ, Larkum AWD (2004) Uptake kinetics and assimilation of phosphorus by Catenella nipae and Ulva lactuca can be used to indicate ambient phosphate availability. J Appl Phycol 16:181–194

    CAS  Google Scholar 

  • Ryberg H, Axelsson L, Carlberg S, Larsson C, Uuisitalo J (1990) CO2 storage and CO2 concentration in brown seaweeds I. Occurrence and ultrastructure. Curr Res Phot 4:517–520

    CAS  Google Scholar 

  • Sato K, Ueno Y, Egashira R (2006a) Uptake of nitrate-nitrogen in intensive shrimp culture ponds by sterile Ulva sp. J Chem Eng Jpn 39:1128–1131. doi:10.1252/jcej.39.1128

    CAS  Google Scholar 

  • Sato K, Eksangsri T, Egashira R (2006b) Ammonia-nitrogen uptake by seaweed for water quality control in intensive mariculture ponds. J Chem Eng Jpn 39:247–255. doi:10.1252/jcej.39.247

    CAS  Google Scholar 

  • Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelps Laminaria hyperborea and L. digitata from Helgoland (North Sea). Eur J Phycol 29:49–56

    Google Scholar 

  • Shpigel M, Neori A, Popper DM, Gordin H (1993) A proposed model for “environmentally clean” land based culture of fish, bivalves and seaweeds. Aquaculture 117:115–128. doi:10.1016/0044-8486(93)90128-L

    Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41:225–253

    CAS  Google Scholar 

  • Sültemeyer D, Rinast KA (1996) The CO2 permeability of the plasma membrane of Chlamydomonas reinhardtii: mass spectrometric O18 exchange measurements from (CO2)-C13-O18 in suspensions of carbonic anhydrase-loaded plasma-membrane vesicles. Planta 200:358–368

    Google Scholar 

  • Taylor RB, Rees TAV (1998) Excretory products of mobile epifauna as a nitrogen source for seaweeds. Limnol Oceanogr 43:600–606

    CAS  Google Scholar 

  • Taylor DI, Nixon SW, Granger SL, Bucley BA, McMahon JP, Lin HJ (1995) Responses of coastal lagoon plant communi- ties to different forms of nutrient enrichment, a mesocosm experiment. Aquat Bot 52:19–34

    Google Scholar 

  • Teichberg M, Fox SE, Aguila C, Olsen YS, Valiela I (2008) Macroalgal response to experimental nutrient enrichment in shallow coastal waters: growth, internal nutrient pools, and isotopic signatures. Mar Ecol Prog Ser 368:117–126

    CAS  Google Scholar 

  • Teichberg M, Fox S, Olsen Y, Valiela I, Martinett P, Iribarne O, Muto E, Petti M, Corbisier T, Soto Jiménez M (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Change Biol 16:2624–2637

    Google Scholar 

  • Turpin DH (1983) Ammonium induced photosynthetic suppression in ammonium limited Dunaliella tertiolecta (Chlorophyta). J Phycol 19:70–76

    CAS  Google Scholar 

  • Tyler AC, McGlathery KJ, Anderson IC (2003) Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon. Limnol Oceanogr 48:2125–2137

    CAS  Google Scholar 

  • Vandermeulen H, Gordin H (1990) Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems. Mass-culture and treatment of effluent. J Appl Phycol 2:363–374. doi:10.1007/BF02180927

    CAS  Google Scholar 

  • Vergara JJ, Berges JA, Falkowski PG (1998) Diel periodicity of nitrate reductase activity and protein levels in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 34:952–961

    CAS  Google Scholar 

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215–225

    CAS  Google Scholar 

  • Weidner M, Kiefer H (1981) Nitrate reduction in the marine brown algae Giffordia mitchellae (Harv.) Ham. Z Pflazenphysiol Bd 104:341–351

    CAS  Google Scholar 

  • Wirtz K, Pahlow M (2010) Dynamic chlorophyll and nitrogen: carbon regulation in algae optimizes instantaneous growth rate. Mar Ecol Prog Ser 402:81–96

    CAS  Google Scholar 

  • Young E, Berges J, Dring M (2009) Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiol Plant 135:400–441

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. L. Gordillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gordillo, F.J.L. (2012). Environment and Algal Nutrition. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_4

Download citation

Publish with us

Policies and ethics