Skip to main content

Sensor Fusion: From Dependence Analysis via Matroid Bases to Online Synthesis

  • Conference paper
Algorithms for Sensor Systems (ALGOSENSORS 2011)

Abstract

Consider the two related problems of sensor selection and sensor fusion. In the first, given a set of sensors, one wishes to identify a subset of the sensors, which while small in size, captures the essence of the data gathered by the sensors. In the second, one wishes to construct a fused sensor, which utilizes the data from the sensors (possibly after discarding dependent ones) in order to create a single sensor which is more reliable than each of the individual ones.

In this work, we rigorously define the dependence among sensors in terms of joint empirical measures and incremental parsing. We show that these measures adhere to a polymatroid structure, which in turn facilitates the application of efficient algorithms for sensor selection. We suggest both a random and a greedy algorithm for sensor selection. Given an independent set, we then turn to the fusion problem, and suggest a novel variant of the exponential weighting algorithm. In the suggested algorithm, one competes against an augmented set of sensors, which allows it to converge to the best fused sensor in a family of sensors, without having any prior data on the sensors’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle bases for network graphs. Algorithmica 40(1), 51–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanc, J.L., Schmidt, N., Bonnier, L., Pezard, L., Lesne, A.: Quantifying neural correlations using lempel-ziv complexity. In: Neurocomp (2008)

    Google Scholar 

  3. Cohen, A., Merhav, N., Weissman, T.: Scanning and sequential decision making for multi-dimensional data - part I: the noiseless case. IEEE Trans. Inform. Theory 53(9), 3001–3020 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cover, T.M., Thomas, J.: Elements of information theory. Wiley (2006)

    Google Scholar 

  5. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the IEEE 85(1), 6–23 (1997)

    Article  Google Scholar 

  6. Jeon, B., Landgrebe, D.A.: Decision fusion approach for multitemporal classification. IEEE Transactions on Geoscience and Remote Sensing 37(3), 1227–1233 (1999)

    Article  Google Scholar 

  7. Karger, D.R.: Random sampling in matroids, with applications to graph connectivity and minimum spanning trees. In: Proceedings of 34th Annual Symposium on Foundations of Computer Science, pp. 84–93. IEEE (1993)

    Google Scholar 

  8. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inform. Comput. 108, 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Merhav, N., Ordentlich, E., Seroussi, G., Weinberger, M.J.: On sequential strategies for loss functions with memory. IEEE Trans. Inform. Theory 48, 1947–1958 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Mathematics of Operations Research, 177–188 (1978)

    Google Scholar 

  11. Oxley, J.G.: Matroid Theory. Oxford Univ. Press, Oxford (1992)

    MATH  Google Scholar 

  12. Polikar, R., Parikh, D., Mandayam, S.: Multiple classifier systems for multisensor data fusion. In: Proceedings of the 2006 IEEE Sensors Applications Symposium, pp. 180–184 (2006)

    Google Scholar 

  13. Matúš, F.: Two constructions on limits of entropy functions. IEEE Trans. Inform. Theory 53(1), 320–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sasiadek, J.Z.: Sensor fusion. Annual Reviews in Control 26(2), 203–228 (2002)

    Article  Google Scholar 

  15. Savari, S.A.: Redundancy of the lempel-ziv incremental parsing rule. IEEE Transactions on Information Theory 43(1), 9–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shamaiah, M., Banerjee, S., Vikalo, H.: Greedy sensor selection: Leveraging submodularity. In: 49th IEEE Conference on Decision and Control (CDC), pp. 2572–2577 (2010)

    Google Scholar 

  17. Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inform. Theory 19(4), 471–480 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vovk, V.G.: Aggregating strategies. In: Proc. 3rd Annu. Workshop Computational Learning Theory, San Mateo, CA, pp. 372–383 (1990)

    Google Scholar 

  19. Waltz, E.: Data fusion for c3i: A tutorial. In: Command, Control, Communications Intelligence (C3I) Handbook, pp. 217–226 (1986)

    Google Scholar 

  20. Yeung, R.W.: A First Course in Information Theory. Springer, Heidelberg (2002)

    Book  Google Scholar 

  21. Yu, B., Sycara, K.: Learning the quality of sensor data in distributed decision fusion. In: 9th International Conference on Information Fusion, pp. 1–8. IEEE (2006)

    Google Scholar 

  22. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory IT-24, 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zozor, S., Ravier, P., Buttelli, O.: On lempel-ziv complexity for multidimensional data analysis. Physica A: Statistical Mechanics and its Applications 345(1-2), 285–302 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Erlebach Sotiris Nikoletseas Pekka Orponen

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, A., Dolev, S., Leshem, G. (2012). Sensor Fusion: From Dependence Analysis via Matroid Bases to Online Synthesis. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2011. Lecture Notes in Computer Science, vol 7111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28209-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28209-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28208-9

  • Online ISBN: 978-3-642-28209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics