Skip to main content

Distributed (Δ + 1)-Coloring in the Physical Model

  • Conference paper
Algorithms for Sensor Systems (ALGOSENSORS 2011)

Abstract

In multi-hop radio networks, such as wireless ad-hoc and sensor networks, nodes employ a MAC (Medium Access Control) protocol such as TDMA to coordinate accesses to the shared medium and to avoid interference of close-by transmissions. These protocols can be implemented using standard node coloring. The (Δ + 1)-coloring problem is to color all nodes in as few timeslots as possible using at most Δ + 1 colors such that any two nodes within distance R are assigned different colors, where R is a given parameter and Δ is the maximum degree of the modeled unit disk graph using the scaling factor R. Being one of the most fundamental problems in distributed computing, this problem is well studied and there are a long chain of algorithms for it. However, all previous work are based on models that are highly abstract, such as message passing models and graph based interference models, which limit the utility of these algorithms in practice.

In this paper, for the first time, we consider the distributed Δ + 1-coloring problem under the more practical SINR interference model. In particular, without requiring any knowledge about the neighborhood, we propose a novel randomized (Δ + 1)-coloring algorithm with time complexity O(Δlogn + log2 n). For the case where nodes can not adjust their transmission power, we give an O(Δlog2 n) randomized algorithm, which only incurs a logarithmic multiplicative factor overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In: STOC (2009)

    Google Scholar 

  2. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Derbel, B., Talbi, E.-G.: Distributed node coloring in the SINR model. In: ICDCS (2010)

    Google Scholar 

  4. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the physical interference model. In: DialM-POMC (2008)

    Google Scholar 

  5. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR. In: Mobihoc (2007)

    Google Scholar 

  6. Goussevskaia, O., Pignolet, Y.A., Wattenhofer, R.: Efficiency of wireless networks: approximation algorithms for the physical interference model. Foundations and Trends in Networking 4(3), 313–420 (2010)

    Article  MATH  Google Scholar 

  7. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transaction on Infromation Theorey 46(2), 388–404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing newly deployed Ad Hoc and sensor networks. In: MOBICOM (2004)

    Google Scholar 

  10. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: SPAA (2005)

    Google Scholar 

  11. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. Distributed Computing 21(4), 271–284 (2008)

    Article  MATH  Google Scholar 

  12. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: PODC (2005)

    Google Scholar 

  13. Scheideler, C., Richa, A., Santi, P.: An O(logn) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: Mobihoc (2008)

    Google Scholar 

  14. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set algorithm for growth-bounded graphs. In: PODC (2008)

    Google Scholar 

  15. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks. In: PODC (2009)

    Google Scholar 

  16. Yu, D., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Distributed (Δ + 1)-Coloring in the Physical Model, http://i.cs.hku.hk/~qshua/algosensorsfullversion.pdf

  17. Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed local broadcasting algorithms in the physical interference model. In: DCOSS (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Erlebach Sotiris Nikoletseas Pekka Orponen

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, D., Wang, Y., Hua, QS., Lau, F.C.M. (2012). Distributed (Δ + 1)-Coloring in the Physical Model. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2011. Lecture Notes in Computer Science, vol 7111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28209-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28209-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28208-9

  • Online ISBN: 978-3-642-28209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics