Skip to main content

Electronic Transport on the Nanoscale

  • Conference paper
  • First Online:
Atomic Scale Interconnection Machines

Abstract

A scanning tunneling microscope with several tips is ideally suited to analyze the electronic transport through objects on the nanoscale. Two different configurations will be discussed. The lateral transport of electrons may be studied by using two tips to drive a current parallel to the surface. A third tip enables to map the corresponding electrochemical potential μ ec. Measurements for a 2D conducting layer will be discussed. To analyze the transport perpendicular to the surface, a thin metallic layer is placed on a semiconducting surface. At the interface a Schottky barrier is formed, which can only be overcome by electrons of sufficient energy. This may be used to split the tunneling current coming from the tip of the microscope, into the ballistic electrons and the electrons which underwent inelastic scattering processes. This technique has been applied to study the ballistic transport of electrons through a thin epitaxial Bi(111) layer as well as through individual molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To conduct “BEEM”, tunneling currents between 10 and 50 pA were chosen as a compromise between the threshold for damaging the molecular layer and a reasonable signal to noise ratio for the current of ballistic electrons. At a tunneling current of 50 pA the BEEM current typically amounts to 4 pA on the clean bismuth surface and to 0.5 pA for most of the C60 molecules or to 3 pA for the PTCDA molecules.

References

  1. Muralt, P., Pohl, D.W.: Scanning tunneling potentiometry. Appl. Phys. Lett. 48(8), 514 (1986)

    Article  ADS  Google Scholar 

  2. Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120 (1983)

    Article  ADS  Google Scholar 

  3. Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)

    Article  ADS  Google Scholar 

  4. Baddorf, A.P.: Scanning tunneling potentiometry: the power of STM applied to electrical transport. In: Kalinin, S.V., Gruverman, A. (eds.) Scanning Probe Microscopy, pp. 11–30. Springer, New York (2007)

    Google Scholar 

  5. Briner, B.G., Feenstra, R.M., Chin, T.P., Woodall, J.M.: Local transport properties of thin bismuth films studied by scanning tunneling potentiometry. Phys. Rev. B 54(8), R5283 (1996)

    Article  ADS  Google Scholar 

  6. Bannani, A., Bobisch, C.A., Möller, R.: Local potentiometry using a multiprobe scanning tunneling microscope. Rev. Sci. Instrum. 79, 083704 (2008)

    Article  ADS  Google Scholar 

  7. Homoth, J., Wenderoth, M., Druga, T., Winking, L., Ulbrich, R.G., Bobisch, C.A., Weyers, B., Bannani, A., Zubkov, E., Bernhart, A.M., Kaspers, M.R., Möller, R.: Electronic transport on the nanoscale: ballistic transmission and Ohm’s law. Nano Lett. 9, 1588 (2009)

    Article  ADS  Google Scholar 

  8. Kaiser, W.J., Bell, L.D.: Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 60, 1406 (1988)

    Article  ADS  Google Scholar 

  9. Bell, L.D., Kaiser, W.J.: Observation of interface band structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 61, 2368 (1988)

    Article  ADS  Google Scholar 

  10. Schottky, W.: Experimental measurement of the total-energy distribution of field-emitted electrons. Zeits. f. Physik 113, 367 (1939)

    Article  ADS  MATH  Google Scholar 

  11. Braun, F.: Über die Stromleitung durch Schwefelmetalle. Pogg. Ann. 153, 556 (1874)

    Google Scholar 

  12. Mönch, W.: Electronic Properties of Semiconductor Interfaces, 43rd edn. Springer, Berlin (2004)

    Google Scholar 

  13. Narayanamurti, V., Kozhevnikov, M.: BEEM imaging and spectroscopy of buried structures in semiconductors. Phys. Rep. 349, 447 (2001)

    Article  ADS  Google Scholar 

  14. Prietsch, M.: Ballistic electron emission microscopy (BEEM): studies of metal/semiconductor interfaces with nanometer resolution. Phys. Rep. 253, 163 (1995)

    Article  ADS  Google Scholar 

  15. Yi, W., Narayanamurti, V., Ku, K.-C., Zhu, M., Samarth, N.: Magnetoresistance in an asymmetric Ga1-xMnxAs resonant tunnelling diode. Phys. Rev. B 80, 201307(R) (2009)

    Google Scholar 

  16. Nienhaus, H., Weyers, S.J., Gergen, B., McFarland, E.W.: Thin Au/Ge Schottky diodes for detection of chemical reaction induced electron excitation. Sens. Actuators B Chem. 87, 421 (2002)

    Article  Google Scholar 

  17. Krix, D., Nünthel, R., Nienhaus, H.: Generation of hot charge carriers by adsorption of hydrogen and deuterium atoms on a silver surface. Phys. Rev. B 75, 073410 (2007)

    Article  ADS  Google Scholar 

  18. Bobisch, C., Bannani, A., Matena, M., Möller, R.: Ultrathin Bi-films on Si(100). Nanotechnology 18, 055606 (2007)

    Article  ADS  Google Scholar 

  19. Jnawali, G., Hattab, H., Krenzer, B., Horn-von Högen, M.: Lattice accommodation of epitaxial Bi(111) films on Si(001) studied with SPA-LEED and AFM. Phys. Rev. B 74, 195340 (2006)

    Google Scholar 

  20. Tolansky, S., Emara, S.H.: Precision multiple-beam interference fringes with high lateral microscopic resolution. J. Opt. Soc. Am. 45, 792 (1955)

    Article  ADS  Google Scholar 

  21. Girardin, C., Coratger, R., Pechou, R., Ajustron, F., Beauvillain, J.: Study of the electron mean free path by ballistic electron emission microscopy. J. Phys. III France 6, 661 (1996)

    Article  Google Scholar 

  22. Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  23. Hattab, H., Zubkov, E., Bernhart, A., Jnawali, G., Bobisch, C., Krenzer, B., Acet, M., Möller, R., Horn-von Hoegen, M.: Epitaxial Bi(111) films on Si(001): strain state, surface morphology, and defect structure. Thin Solid Films 516, 8227 (2008)

    Google Scholar 

  24. Smith, G.E., Baraff, G.A., Rowell, J.M.: Effective g factor of electrons and holes in bismuth. Phys. Rev. 135, A1118 (1964)

    Article  ADS  Google Scholar 

  25. Bannani, A., Bobisch, C., Möller, R.: Ballistic electron microscopy of individual molecules. Science 315, 1824 (2007)

    Article  ADS  Google Scholar 

  26. Palm, H., Arbes, M., Schulz, M.: Nanometer-microscopy of the electron transmission through an ultrathin (3–22 nm) Au film and of the Au-Si Schottky barrier height. Appl. Phys. A 56, 1 (1993)

    Article  ADS  Google Scholar 

  27. Niedermann, P., Quattropani, L., Solt, K., Maggio-Aprile, I., Fischer, O.: Hot-carrier scattering in a metal: a ballistic-electron-emission microscopy investigation on PtSi. Phys. Rev. B 48, 8833 (1993)

    Article  ADS  Google Scholar 

  28. Feenstra, R.M., Stroscio, J.A., Tersoff, J., Fein, A.P.: Local state density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys. Rev. Lett. 58, 1668 (1987)

    Article  ADS  Google Scholar 

  29. Hamers, R.J., Tromp, R.M., Demuth, J.E.: Surface electronic structure of Si(111)-(7x7) resolved in real space. Phys. Rev. Lett. 56, 18 (1986)

    Article  Google Scholar 

  30. Stipe, B.C., Rezaei, M.A., Ho, W.: Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732 (1998)

    Article  ADS  Google Scholar 

  31. Sirringhaus, H., Lee, E.Y., von Känel, H.: Hot carrier scattering at interfacial dislocations observed by ballistic-electron-emission microscopy. Phys. Rev. Lett. 73, 577 (1994)

    Article  ADS  Google Scholar 

  32. Ast, C.R., Höchst, H.: Electronic structure of a bismuth bilayer. Phys. Rev. B 67, 113102 (2003)

    Article  ADS  Google Scholar 

  33. Altmann, E.I., Colton, R.J.: Determination of the orientation of C60 adsorbed on Au(111) and Ag(111). Phys. Rev. B 48, 18244 (1993)

    Article  ADS  Google Scholar 

  34. Yamachika, R., Grobis, M., Wachowiak, A., Crommie, M.F.: Controlled atomic doping of a single C60 molecule. Science 304, 281 (2004)

    Article  ADS  Google Scholar 

  35. Ono, T., Hirose, K.: First-principles study of electron-conduction properties of C60 bridges. Phys. Rev. Lett. 98, 026804 (2007)

    Article  ADS  Google Scholar 

  36. Chizhov, I., Kahn, A., Scoles, G.: The influence of steps on the orientation of copper phthalocyanine monolayers on Au(111). J. Cryst. Growth 208, 449 (2000)

    Article  ADS  Google Scholar 

  37. Umbach, E., Sokolowski, M., Fink, R.: Substrate interaction, long-range order, and epitaxy of large organic adsorbates. Appl. Phys. A 63, 565 (1996)

    Article  ADS  Google Scholar 

  38. Temirov, R., Soubatch, S., Luican, A., Tautz, F.S.: Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 444, 350 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Deutsche Forschungsgemeinschaft (DFG) through the Sonderforschungsbereich 616 “Energy Dissipation at Surfaces”. Additional support to M.C.C. is granted by the Studienstiftung des deutschen Volkes. D. Utzat is gratefully acknowledged for designing and constructing the STM electronics. We gratefully acknowledge M. Wenderoth for stimulating discussions and providing the simulations for the Ohmic network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bobisch, C.A., Bernhart, A.M., Kaspers, M.R., Cottin, M.C., Schaffert, J., Möller, R. (2012). Electronic Transport on the Nanoscale. In: Joachim, C. (eds) Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28172-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28172-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28171-6

  • Online ISBN: 978-3-642-28172-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics