Skip to main content

Towards Extending Sensor Node Lifetime with Printed Supercapacitors

  • Conference paper
Wireless Sensor Networks (EWSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7158))

Included in the following conference series:

Abstract

The realization of completely autonomous wireless sensor networks (WSN) has been hindered with difficulties in implementing a truly “perpetual” power supply. Typically, the generic power supply for a sensor node is a battery, which is limited in cycle life. Current research in energy scavenging technology, along with the use of innovative energy storage devices such as supercapacitors, has demonstrated the improvement of sensor node lifetime characteristics. In this paper, we present the experimental results on a novel electrochemical supercapacitor (with improved electrical characteristics) manufactured using a “direct write” deposition tool. This technology allows one to print the supercapacitors with capacitances above 40 mF/cm2 directly on board of a sensor node covering any unoccupied surface area. Experiments on the printed storage chrarging with (AC) and (DC) based ambient energy via a specially developed generic energy scavenging module (ESM), and 24-hours deployment with a typical sensor node have showed promise towards extending sensor node lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selavo, L., Wood, A., Cao, Q., SooKoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., Stankovic, J., Young, D., Porter, J.: LUSTER: Wireless Sensor Network for Environmental Research. In: 5th International Conference on Embedded Networked Sensor Systems, Sydney, Australia, pp. 103–116 (2007)

    Google Scholar 

  2. Simjee, F., Chou, P.H.: Everlast: Long-life, Supercapacitor-operated Wireles Sensor Node. In: International Symposium on Low Power Electronics and Design, Tegernsee, Germany, pp. 197–202 (2006)

    Google Scholar 

  3. Jiang, X., Polastre, J., Culler, D.: Perpetual Environmentally Powered Sensor Networks. In: 4th International Symposium on Information Processing in Sensor Network, pp. 463–468 (2005)

    Google Scholar 

  4. Zhang, P., Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware Design Experience in ZebraNet. In: 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, USA, pp. 227–238 (2004)

    Google Scholar 

  5. Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design Considerations for Solar Energy Harvesting Wireless Embedded Systems. In: 4th International Symposium on Information Processing in Sensor Networks, pp. 457–462 (2005)

    Google Scholar 

  6. Chee, Y.H., Koplow, M., Mark, M., Pletcher, N., Seeman, M., Burghardt, F., Steingart, D., Rabaey, J., Wright, P., Sanders, S.: PicoCube: A 1cm3 Sensor Node Powered by Harvested Energy. In: Design Automation Conference, Anaheim, USA, pp. 114–119 (2008)

    Google Scholar 

  7. Perpetuum, http://www.perpetuum.co.uk

  8. Torah, R.N., Tudor, M.J., Patel, K., Garcia, I.N., Beeby, S.P.: Autonomous Low Power Microsystem Powered by Vibration Energy Harvesting. In: 6th Annual IEEE Conference on Sensors, Atlanta, USA, pp. 264–267 (2007)

    Google Scholar 

  9. Park, C., Chou, P.H.: AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless Sensor Nodes. In: 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, vol. 1, pp. 168–177 (2006)

    Google Scholar 

  10. Roundy, S., Wright, P.K., Rabaey, J.M.: Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations. Kluwer Academic Publishers Group, Boston (2003)

    Google Scholar 

  11. Simon, P., Gogotsi, Y.: Materials for Electrochemical Capacitors. Nature Materials 7, 845–854 (2008)

    Article  Google Scholar 

  12. Kotz, R., Carlen, M.: Principles and Applications of Electrochemical Capacitors. Electrochimica Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  13. Conway, B.: Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications. Kluwer Academic, New York (1999)

    Google Scholar 

  14. Lewandowski, A., Galiński, M.: Carbon – Ionic Liquid Double-Layer Capacitors. Physics and Chemistry of Solids 65, 281–286 (2004)

    Article  Google Scholar 

  15. Forsyth, S.A., Pringle, J.M., MacFarlane, D.R.: Ionic Liquids – an Overview. Australian Journal of Chemistry 57, 113–119 (2004)

    Article  Google Scholar 

  16. Ho, C.C., Steingart, D.A., Evans, J.W., Wright, P.K.: Tailoring Electrochemical Capacitor Energy Storage Using Direct Write Dispenser Printing. ECS Transactions 16(1), 35–47 (2008)

    Article  Google Scholar 

  17. Hart, J.P., Wring, S.A.: Recent Developments in the Design and Application of Screen-Printed Electrochemical Sensors for Biomedical, Environmental and 115 Industrial Analyses. TrAC Trends in Analytical Chemistry 16(2), 89–103 (1997)

    Article  Google Scholar 

  18. Arnold, C.B., Pique, A.: Laser Direct-Write Processing. Mrs Bulletin 32, 9–12 (2007)

    Article  Google Scholar 

  19. Steingart, D.A., Ho, C.C., Salminen, J., Evans, J.W., Wright, P.K.: Dispenser Printing of Solid Polymer – Ionic Liquid Electrolytes for Lithium Ion Cells. In: 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Oadaiba, Tokyo, Japan, pp. 261–264 (2007)

    Google Scholar 

  20. Phipps, A., Liu, F., Cattafesta, L., Sheplak, M., Nishida, T.: Demonstartion of a Wireless, Self-Powered, Electroacoustic Liner System. Acoustic Society of America 125(2), 873–881 (2009)

    Article  Google Scholar 

  21. Roundy, S., Wright, P.K., Rabaey, J.: A Study of Low Level Vibrations as a Power Source for Wireless Sensor Node. Computer Communications (Elsevier) 26, 1131–1144 (2003)

    Article  Google Scholar 

  22. Raghunathan, V., Chou, P.H.: Design and Power Management of Energy Harvesting Embedded Systems. In: Internationsl Symposium on Low Power Electronics and Design, Togernsee, Germany, pp. 369–374 (2006)

    Google Scholar 

  23. Memsic, Mica2 mote, http://www.memsic.com

  24. Brunelli, D., Moser, C., Thiele, L., Benini, L.: Design of a Solar-harvesting Circuit for Batteryless embedded Systems. IEEE Transactions on Circuits and Systems I: Regular papers 56(11), 2519–2528 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gian Pietro Picco Wendi Heinzelman

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Somov, A., Ho, C.C., Passerone, R., Evans, J.W., Wright, P.K. (2012). Towards Extending Sensor Node Lifetime with Printed Supercapacitors. In: Picco, G.P., Heinzelman, W. (eds) Wireless Sensor Networks. EWSN 2012. Lecture Notes in Computer Science, vol 7158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28169-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28169-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28168-6

  • Online ISBN: 978-3-642-28169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics