Skip to main content

GPS-Equipped Wireless Sensor Network Node for High-Accuracy Positioning Applications

  • Conference paper
Wireless Sensor Networks (EWSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7158))

Included in the following conference series:

Abstract

This work presents the design, implementation, and end-to-end system concept and integration of a wireless data acquisition system for high-accuracy positioning applications. A wireless network of GPS-equipped sensor nodes, built from low-cost off-the-shelf components, autonomously acquires L1 GPS data for Differential GPS (DGPS) processing of raw satellite information. The differential processing on the backend infrastructure achieves relative position and motion of individual nodes within the network with sub-centimeter accuracy. Leveraging on global GPS time synchronization, network-wide synchronized measurement scheduling, and duty-cycling coupled with power optimized operation and robustness against harsh environmental conditions make the introduced sensor node well suited for monitoring or surveying applications in remote areas. Unattended operation, high spatial and temporal coverage and low cost distinguish this approach from traditional, very costly and time consuming approaches. The prototype data acquisition system based on a low-power mote equipped with a commercially available GPS module has been successfully implemented and validated in a testbed setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberer, K., Hauswirth, M., Salehi, A.: Zero-programming sensor network deployment. In: In Next Generation Service Platforms for Future Mobile Systems, SPMS (2007)

    Google Scholar 

  2. Aguado, L., et al.: A low-cost, low-power Galileo/GPS positioning system for monitoring landslides. In: Navitec (October 2006)

    Google Scholar 

  3. Astronomical Institute, University of Bern, Bernese GPS software version 5.0 (January 2007) (accessed August 01, 2011)

    Google Scholar 

  4. Beran, T., et al.: High-accuracy point positioning with low-cost GPS receivers: how good can it get? In: ION GNSS (2005)

    Google Scholar 

  5. Beutel, J., et al.: PermaDAQ: A scientific instrument for precision sensing and data recovery under extreme conditions. In: Proc. 8th ACM/IEEE Int’l Conf. on Information Processing in Sensor Networks (IPSN/SPOTS 2009), pp. 265–276. ACM (2009)

    Google Scholar 

  6. Beutel, J., Buchli, B., Ferrari, F., Keller, M., Zimmerling, M., Thiele, L.: X-sense: Sensing in extreme environments. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6 (March 2011)

    Google Scholar 

  7. Buchli, B., et al.: Demo abstract: Feature-rich platform for WSN design space exploration. In: 10th International Conference on Information Processing in Sensor Networks (IPSN), pp. 115–116 (April 2011)

    Google Scholar 

  8. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-low power data gathering in sensor networks. In: 6th International Symposium on Information Processing in Sensor Networks, IPSN 2007, pp. 450–459. ACM (April 2010), doi:10.1109/IPSN.2007.4379705

    Google Scholar 

  9. Carter, W., Shrestha, R., Slatton, K.: Geodetic laser scanning. Physics Today 60(12), 41–47 (2004)

    Article  Google Scholar 

  10. Choy, S.: An investigation into the accuracy of single frequency precise point positioning (PPP). PhD Thesis. School of Mathematical and Geospatial Sciences, RMIT University (2009)

    Google Scholar 

  11. Crozier, M.: Deciphering the effect of climate change on landslide activity: A review. Geomorphology 124(3-4), 260–267 (2010), doi:10.1016/j.geomorph.2010.04.009

    Article  Google Scholar 

  12. D’Amico, S., Montenbruck, O.: Differential GPS: An enabling technology for formation flying satellites. In: Sandau, R., Roeser, H.-P., Valenzuela, A. (eds.) Small Satellite Missions for Earth Observation, pp. 457–465. Springer, Heidelberg (2010), doi:10.1007/978-3-642-03501-2_43

    Chapter  Google Scholar 

  13. Hasler, A.: Thermal conditions and kinematics of steep bedrock permafrost. PhD Thesis. Department of Geography, University of Zurich (2011)

    Google Scholar 

  14. Jurdak, R., et al.: Adaptive GPS duty cycling and radio ranging for energy-efficient localization. In: Proc. of the 8th ACM Conference on Embedded Networked Sensor Systems (Sensys), pp. 57–70. ACM (November 2010), doi:10.1145/1869983.1869990

    Google Scholar 

  15. Keller, M., et al.: Comparative performance analysis of the permadozer protocol in diverse deployments. In: Proc. of the Sixth IEEE International Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2011), pp. 969–977. IEEE, Bonn (2011)

    Google Scholar 

  16. Levis, P., et al.: TinyOS: An operating system for sensor networks. In: Ambient Intelligence. Springer, Heidelberg (2004)

    Google Scholar 

  17. Limpach, P., Grimm, D.: Rock glacier monitoring with low-cost GPS receivers. In: Abstract Volume 7th Swiss Geoscience Meeting (November 2009)

    Google Scholar 

  18. Lucieer, A., Robinson, S., Turner, D.: Using an unmanned aerial vehicle (UAV) for ultra-high resolution mapping of Antarctic moss beds. In: Proc. of the 15th Australasian Remote Sensing & Photogrammetry Conference (September 2010)

    Google Scholar 

  19. Martinez, K., Ong, R., Hart, J.: Glacsweb: a sensor network for hostile environments. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2004, pp. 81–87 (October 2004), doi:10.1109/SAHCN.2004.1381905

    Google Scholar 

  20. Ravanel, L., Deline, P.: Climate influence on rockfalls in high-alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ’Little Ice Age’. The Holocene 21(2), 357–365 (2010)

    Article  Google Scholar 

  21. Schüler, T., Diessongo, H., Poku-Gyamfi, Y.: Precise ionosphere-free single-frequency GNSS positioning. GPS Solutions 15, 139–147 (2011), doi:10.1007/s10291-010-0177-5

    Article  Google Scholar 

  22. Squarzoni, C., Delacourt, C., Allemand, P.: Differential single-frequency GPS monitoring of the la valette landslide (french alps). Engineering Geology 79(3-4), 215–229 (2005)

    Article  Google Scholar 

  23. Stoleru, R., He, T., Stankovic, J.: Walking GPS: a practical solution for localization in manually deployed wireless sensor networks. In: 29th Annual IEEE International Conference on Local Computer Networks, pp. 480–489 (November 2004), doi:10.1109/LCN.2004.136

    Google Scholar 

  24. u-blox AG, u-blox 6 receiver description including protocol specification, http://www.u-blox.com/images/downloads/Product_Docs/u-blox6_ReceiverDescriptionProtocolSpec_%28GPS.G6-SW-10018%29.pdf (accessed August 01, 2011)

  25. U.S. Coast Guard Navigation Center, NAVSTAR GPS user equipment introduction (September 1996) (accessed August 01, 2011)

    Google Scholar 

  26. Werner-Allen, G., et al.: Fidelity and yield in a volcano monitoring sensor network. In: Proc. of the 7th Symposium on Operating Systems Design and Implementation, OSDI 2006, pp. 381–396. USENIX Association, Berkeley (2006)

    Google Scholar 

  27. Wirz, V., et al.: Temporal characteristics of different cryosphere-related slope movements in high mountains. In: Proc. 2nd World Landslide Forum. Springer, Heidelberg (2011)

    Google Scholar 

  28. Wright, T., et al.: InSAR observations of low slip rates on the major faults of western Tibet. Science 305(5681), 236–239 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gian Pietro Picco Wendi Heinzelman

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchli, B., Sutton, F., Beutel, J. (2012). GPS-Equipped Wireless Sensor Network Node for High-Accuracy Positioning Applications. In: Picco, G.P., Heinzelman, W. (eds) Wireless Sensor Networks. EWSN 2012. Lecture Notes in Computer Science, vol 7158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28169-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28169-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28168-6

  • Online ISBN: 978-3-642-28169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics