Skip to main content

The Modeling and the Simulation of the Fluid Machines of Synthetic Biology

  • Conference paper
Membrane Computing (CMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7184))

Included in the following conference series:

Abstract

In the past century, several conceptual and technological breakthroughs produced the digital computers and open the digital information age. At the very same time, the Watson – Crick model of the digital coding of the genetic information was developed. Despite this parallel development, biology as long focused in the understanding of existing systems shaped by natural evolution whilst computer science has built its own (hardware and software) objects from scratch.

This situation is no longer true: the emergence of synthetic biology opens the doors to the systematic design and construction of biological (fluid) machines. However, even if fluid machines can be based on a kind of digital information processing, they differ from the discrete dynamical systems we are used in computer science: they have a dynamical structure.

In this paper, we stress the parallel between the development of digital information processing and genetic information processing. We sketch some tools developed or appropriated in computer science that can be used to model and specify such fluid machines. We show through an example the use of mgs, a domain specific language, in the proof of concept of a “multicellular bacterium” designed at the 2007 iGEM competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, M.: Cellular computing. Series in systems biology. Oxford University Press (2004)

    Google Scholar 

  2. Bikard, D., Caffin, F., Chiaruttini, N., Clozel, T., Guegan, D., Landrain, T., Puyraimond, D., Rizk, A., Shotar, E., Vieira, G.: The SMB: Synthetic Multicellular Bacterium (iGEM 2007 Paris team web site) (2007), http://parts.mit.edu/igem07/index.php/Paris (visited in July 2011)

  3. Brown, J.: The iGEM competition: building with biology. Synthetic Biology, IET 1(1.2), 3–6 (2007)

    Article  Google Scholar 

  4. Canton, B., Labno, A., Endy, D.: Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology 26(7), 787–793 (2008)

    Article  Google Scholar 

  5. Chin, J.: Programming and engineering biological networks. Current Opinion in Structural Biology 16(4), 551–556 (2006)

    Article  Google Scholar 

  6. Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization. Springer, Heidelberg (1979)

    Book  Google Scholar 

  7. Elowitz, M., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. J. Biol. Chem. 274, 6074–6079 (1999)

    Article  Google Scholar 

  8. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449–453 (2005)

    Article  Google Scholar 

  9. Fontana, W., Buss, L.W.: The arrival of the fittest: Toward a theory of biological organization. Bulletin of Mathematical Biology (1994)

    Google Scholar 

  10. Gánti, T.: Chemoton theory. Theoretical Foundations of Fluid Machineries, Theory of Living Systems, vol. 1, 2. Kluwer Academic/Plenum (2003)

    Google Scholar 

  11. Gardner, T., Cantor, C., Collins, J.: Construction of a genetic toggle switch inescherichia coli. Nature 403, 339–342 (2000)

    Article  Google Scholar 

  12. Giavitto, J.L.: Topological Collections, Transformations and Their Application to the Modeling and the Simulation of Dynamical Systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 208–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational Models for Integrative and Developmental Biology. In: Modeling and Simulation of Biological Processes in the Context of Genomics, Hermes (July 2002), also republished as an high-level course in the proceedings of the Dieppe spring school on Modeling and simulation of biological processes in the context of genomics, Dieppes, France, May 12-17 (2003)

    Google Scholar 

  14. Giavitto, J.L., Michel, O.: Data Structure as Topological Spaces. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 137–150. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes. BioSystems 70(2), 149–163 (2003)

    Article  Google Scholar 

  16. Giavitto, J.L., Michel, O., Delaplace, F.: Declarative simulation of dynamicals systems: the 8 1/2 programming language and its application to the simulation of genetic networks. BioSystems 68(2-3), 155–170 (2003)

    Article  Google Scholar 

  17. Giavitto, J.L.: Simulation de systèmes à structure dynamique: modélisation en morphogenèse et application à la conception de machines fluide. In: Colloque National des systèmes complexes: Vers une science et ingénierie des systèmes complexes (SISC 2009), May 27-29 (2009), invited Speaker. Video published at address http://iscpif.fr/SISC09

  18. Giavitto, J.L., Michel, O.: Mgs: a rule-based programming language for complex objects and collections. In: van den Brand, M., Verma, R. (eds.) Electronic Notes in Theoretical Computer Science, vol. 59. Elsevier Science Publishers (2001)

    Google Scholar 

  19. Giavitto, J.L., Michel, O.: The topological structures of membrane computing. Fundamenta Informaticae 49, 107–129 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Giavitto, J.L., Spicher, A.: Topological rewriting and the geometrization of programming. Physica D 237(9), 1302–1314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guet, C., Elowitz, M., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296(5572), 1466 (2002)

    Article  Google Scholar 

  22. Heinemann, M., Panke, S.: Synthetic biology – putting engineering into biology. Bioinformatics 22(22), 2790 (2006)

    Article  Google Scholar 

  23. Henle, M.: A combinatorial introduction to topology. Dover Publications, New-York (1994)

    MATH  Google Scholar 

  24. TESSY EU-NEST PathFinder initiative: Towards a european strategy for synthetic biology. See especially Deliverable 2.6: Final Roadmap towards Synthetic Biology in Europe (2008), http://www.tessy-europe.eu/ (visited in July 2011)

  25. Keller, E.F.: Refiguring Life: Metaphors of Twentieth-century Biology. Columbia University Press (1995)

    Google Scholar 

  26. Knight, T.: Idempotent vector design for standard assembly of biobricks. Tech. rep., DTIC Document (2003), http://handle.dtic.mil/100.2/ADA457791

  27. Kobayashi, H., Kærn, M., Araki, M., Chung, K., Gardner, T., Cantor, C., Collins, J.: Programmable cells: interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences of the United States of America 101(22), 8414 (2004)

    Article  Google Scholar 

  28. Michel, O., Spicher, A., Giavitto, J.L.: Rule-based programming for integrative biological modeling – application to the modeling of the λ phage genetic switch. Natural Computing 8(4), 865–889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Norris, V., Zemirline, A., Amar, P., Audinot, J., Ballet, P., Ben-Jacob, E., Bernot, G., Beslon, G., Cabin, A., Fanchon, E., Giavitto, J.L., Glade, N., Greussay, P., Grondin, Y., Foster, J., Hutzler, G., Jost, J., Kepes, F., Michel, O., Molina, F., Signorini, J., Stano, P., Thierry, A.: Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory in Biosciences, 1–18 (2011)

    Google Scholar 

  30. Păun, G.: From cells to computers: computing with membranes (P systems). Biosystems 59(3), 139–158 (2001)

    Article  Google Scholar 

  31. Raoult, J.C., Voisin, F.: Set-theoretic Graph Rewriting. In: Ehrig, H., Schneider, H.-J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 312–325. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  32. Barbier de Reuille, P., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., Traas, J.: Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. PNAS 103(5), 1627–1632 (2006), http://www.pnas.org/cgi/content/abstract/103/5/1627

    Article  Google Scholar 

  33. Ronzenberg, G., Salomaa, A. (eds.): L systems: from formalism to programming languages. Springer, Heidelberg (1992)

    Google Scholar 

  34. Schrödinger, E.: What is Life? Cambridge University Press, Cambridge (1944)

    Google Scholar 

  35. Spicher, A., Michel, O., Cieslak, M., Giavitto, J.L., Prusinkiewicz, P.: Stochastic p systems and the simulation of biochemical processes with dynamic compartments. BioSystems 91(3), 458–472 (2008)

    Article  Google Scholar 

  36. Spicher, A., Michel, O., Giavitto, J.-L.: Declarative Mesh Subdivision Using Topological Rewriting in MGS. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 298–313. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  37. Spicher, A., Michel, O., Giavitto, J.L.: Interaction-Based Simulations for Integrative Spatial Systems Biology. In: Understanding the Dynamics of Biological Systems: Lessons Learned from Integrative Systems Biology. Springer, Heidelberg (2011)

    Google Scholar 

  38. Utkin, V.: Variable structure systems with sliding modes. IEEE Transactions on Automatic Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Varela, F.J.: Principle of Biological Autonomy. McGraw-Hill/Appleton & Lange (1979)

    Google Scholar 

  40. Von Neumann, J.: Theory of Self-Reproducing Automata. Univ. of Illinois Press (1966)

    Google Scholar 

  41. Weiss, R., Basu, S., Hooshangi, S., Kalmbach, A., Karig, D., Mehreja, R., Netravali, I.: Genetic circuit building blocks for cellular computation, communications, and signal processing. Natural Computing 2(1), 47–84 (2003)

    Article  Google Scholar 

  42. Weiss, R., Knight, T., Sussman, G.: Genetic process engineering. In: Cellular Computing. Series in Systems Biology, pp. 43–73. Orford university Press (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giavitto, JL. (2012). The Modeling and the Simulation of the Fluid Machines of Synthetic Biology. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds) Membrane Computing. CMC 2011. Lecture Notes in Computer Science, vol 7184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28024-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28024-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28023-8

  • Online ISBN: 978-3-642-28024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics