Skip to main content

Regularization and Adjustment

  • Chapter
  • First Online:
Sciences of Geodesy - II

Abstract

The linear observation equation is usually expressed as

$$ {\user2{l}} = {\user2{Ax}} + {\user2{e}} $$
(6.1)

where the non-random design matrix \( {\user2{A}} \in R^{m \times n} , \) the vector of unknown parameters \( {\user2{x}} \in R^{n \times 1} , \) the vector of measurements \( {\user2{l}} \in R^{m \times 1} \)and contaminated by random error vector \( {\user2{e}} \) with zero mean and variance–covariance matrix \( \sigma_{0}^{2} {\user2{P}}^{ - 1} , \) where P is the weight matrix and \( \sigma_{0}^{2} \) is the variance of unit weight. If the coefficient matrix A of the observation equation possesses very large condition number, the observation equation is ill-conditioned, which is defined as ill-posed problems by Hadamard (1932). In geodesy ill-posed problems are frequently encountered in satellite gravimetry due to downward continuation, or in geodetic date procession due to the colinearity among parameters that are to be estimated. Most useful and necessary adjustment algorithms for data processing are outlined in the second part of this chapter. The adjustment algorithms discussed here include least squares adjustment, sequential application of least squares adjustment via accumulation, sequential least squares adjustment, conditional least squares adjustment, a sequential application of conditional least squares adjustment, block-wise least squares adjustment, a sequential application of block-wise least squares adjustment, a special application of block-wise least squares adjustment for code-phase combination, an equivalent algorithm to form the eliminated observation equation system and the algorithm to diagonalize the normal equation and equivalent observation equation. A priori constrained adjustment and filtering are discussed for solving the rank deficient problems. After a general discussion on the a priori parameter constraints, a special case of the so-called a priori datum method is given. A quasi-stable datum method is also discussed. A summary is given at the end of this part of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover Publications Inc., New York

    Google Scholar 

  • Albertella A, Sacerdote F (1995) Spectral analysis of block averaged data in geopotential global model determination. J Geodesy 70(3):166–175

    Article  Google Scholar 

  • Arikan F, Erol CB, Arikan O (2003) Regularized estimation of vertical total electron content from global positioning system data. J Geophys Res 108(A12): SIA20/1–12

    Google Scholar 

  • Axelsson O (1994) Iterative solution methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Ayres F (1975) Differential- und Integralrechnung, schaum’s outline. McGraw-Hill Book, New York

    Google Scholar 

  • Blewitt G (1998) GPS data processing methodology. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin, pp 231–270

    Chapter  Google Scholar 

  • Bronstein IN, Semendjajew KA (1987) Taschenbuch der Mathematik.B. G. Teubner Verlagsgesellschaft, Leipzig, ISBN 3-322-00259-4

    Google Scholar 

  • Cross PA, Ramjattan AN (1995) A Kalman filter model for an integrated land vehicle navigation sys-tem. In: Proceedings of the 3rd international workshop on high precision navigation: High precision navigation 95. University of Stuttgart, April 1995, Bonn, pp 423–434

    Google Scholar 

  • Cui X, Yu Z, Tao B, Liu D (1982) Adjustment in surveying. Surveying Press, Peking, (in Chinese)

    Google Scholar 

  • Davis P, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic, New York

    Google Scholar 

  • Davis PJ (1963) Interpolation and approximation. Dover Publications Inc., New York

    Google Scholar 

  • Ding X, Coleman R (1996) Multiple outlier detection by evaluating redundancy contributions of observations. J Geodesy 708:489–498

    Google Scholar 

  • Faruqi FA, Turner KJ (2000) Extended Kalman filter synthesis for integrated global positioning/iner-tial navigation systems. Appl Math Comput 115(2–3):213–227

    Article  Google Scholar 

  • Gleason DM (1996) Avoiding numerical stability problems of long duration DGPS/INS Kalman filters. J Geodesy 70(5):263–275

    Article  Google Scholar 

  • Gotthardt E (1978) Einführung in die Ausgleichungsrechnung. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Hadamard J (1932) Lecture on Cauchy’s problem in linear partial differential equations, Yale University Press, reprinted by Dover, New York, 1952

    Google Scholar 

  • Hansen P (1996) Rank-deficient and ill-posed problems, PHD thesis of the technical university of Denmark

    Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  • Hostetter GH (1987) Handbook of digital signal processing, engineering applications. Academic, New York

    Google Scholar 

  • Hotine M (1991) Differential geodesy. Springer, Berlin

    Book  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101

    Article  Google Scholar 

  • Knickmeyer ET, Knickmeyer EH, Nitschke M (1996) Zur Auswertung kinematischer Messungen mit dem Kalman-Filter. Schriftenreihe des Deutschen Vereins für Vermessungswesen, Bd. 22, Stuttgart, pp 141–166

    Google Scholar 

  • Koch KR (1980) Parameterschätzung und Hypothesentests in linearen Modellen. Dümmler-Verlag, Bonn

    Google Scholar 

  • Koch KR (1988) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Google Scholar 

  • Koch KR (1996) Robuste Parameterschätzung. Allgemeine Vermessungsnachrichten 103(1):1–18

    Google Scholar 

  • Koch KR, Yang Y (1998a) Konfidenzbereiche und Hypothesentests für robuste Parameterschätzungen. ZfV 123(1):20–26

    Google Scholar 

  • Koch KR, Yang Y (1998b) Robust Kalman filter for rank deficient observation model. J Geodesy 72:436–441

    Article  Google Scholar 

  • Lemmens R (2004) Book review: GPS—theory, algorithms and applications, Xu G 2003. Int J Appl Earth Obs Geoinf 5: 165–166

    Google Scholar 

  • Li B, Shen Y, Feng Y (2010) Fast GNSS ambiguity resolution as an ill-posed problem. J Geodesy 84:683–698

    Article  Google Scholar 

  • Ludwig R (1969) Methoden der Fehler- und Ausgleichsrechnung. Vieweg and Sohn, Braunschweig

    Google Scholar 

  • Masreliez CJ, Martin RD (1977) Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE T Automat Contr AC-22:361–371

    Google Scholar 

  • Miller K (1970) Least squares methods for ill-posed problems with a prescribed bound, SIAM J. Math Anal 1:52–74

    Google Scholar 

  • Mohamed AH, Schwarz KP (1999) Adaptive Kalman filtering for INS/GPS. J Geodesy 73:193–203

    Article  Google Scholar 

  • Morozov VA (1984) Methods for solving incorrectly posed problems. Springer, Berlin

    Book  Google Scholar 

  • Ou JK, Wang ZJ (2004) An improved regularization method to resolve integer ambiguity in rapid positioning using single frequency GPS receivers. Chinese Sci Bull 49(2):196–200

    Article  Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodynamics 39:1–10

    Article  Google Scholar 

  • Rothacher M, Schaer S (1995) GPS-Auswertetechniken. Schriftenreihe des Deutschen Vereins für Vermessungswesen, Bd. 18, pp 107–121

    Google Scholar 

  • Schaffrin B (1980) Tikhonov regularization in geodesy, an example. Boll Geod Sci Aff 39:207–216

    Google Scholar 

  • Schaffrin B (1991) Generating robustified Kalman filters for the integration of GPS and INS. Techni-cal Report, No. 15, Institute of Geodesy, University of Stuttgart

    Google Scholar 

  • Schaffrin B (1995) On some alternative to Kalman filtering. In: Sanso F (ed) Geodetic theory today. Springer, Berlin, pp 235–245

    Google Scholar 

  • Schaffrin B (2008) Minimum mean squared error (MSE) adjustment and the optimal Tikhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUE). J. Geod 82:113–121

    Article  Google Scholar 

  • Schaffrin B, Grafarend E (1986) Generating classes of equivalent linear models by nuisance parameter elimination. Manuscr Geodaet 11:262–271

    Google Scholar 

  • Shen Y, Li B (2007) Regularized solution to fast GPS ambiguity resolution. J Surveying Eng 133(4):168–172

    Article  Google Scholar 

  • Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Cambridge Press, Wellesley

    Google Scholar 

  • Tarantola A (2005) Inverse problem theory. SIAM, Phildelphia

    Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70(1–2):65–82

    Article  Google Scholar 

  • Tikhonov AN (1963a) Regularization of ill-posed problems, English translation of Dokl. Akad Nauk SSSR 151(1):49–52

    Google Scholar 

  • Tikhonov AN (1963b) Solution of incorrectly formulated problems and the regularization method, English translation of Dokl. Akad Nauk SSSR 151(3):501–504

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, New York

    Google Scholar 

  • Tikhonov AN, Goncharsky AV, Steppanov VV, Yagola AG (1995) Numerical methods for the solution of ill-posed problems. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Tsai C, Kurz L (1983) An adaptive robustifing approach to Kalman filtering. Automatica 19:279–288

    Article  Google Scholar 

  • Wahba G (1983) Bayesian “confidence intervals” for the cross-validated smoothing spline. J R Stat Soc B45:133–150

    Google Scholar 

  • Wang LX, Fang ZD, Zhang MY, Lin GB, Gu LK, Zhong TD, Yang XA, She DP, Luo ZH, Xiao BQ, Chai H, Lin DX (1979) Mathematic handbook. Educational Press, Peking. ISBN 13012-0165

    Google Scholar 

  • Wang G, Chen Z, Chen W, Xu G (1988) The principle of GPS precise positioning system. Surveying Press, Peking, p 345. ISBN 7-5030-0141-0/P.58 (in Chinese)

    Google Scholar 

  • Xu G (2002a) GPS data processing with equivalent observation equations. GPS Solutions, vol 6, No. 1–2, 6:28–33

    Google Scholar 

  • Xu G (2002b) A general criterion of integer ambiguity search. J GPS 1(2):122–131

    Article  Google Scholar 

  • Xu G (2003) A diagonalization algorithm and its application in ambiguity search. J. GPS 2(1):35–41

    Article  Google Scholar 

  • Xu G (2007) GPS–theory, algorithms and applications. Springer, Berlin, pp xix + 340

    Google Scholar 

  • Xu G, Qian Z (1986) The application of block elimination adjustment method for processing of the VLBI Data. Crustal Deformation and Earthquake, Vol. 6, No. 4, (in Chinese)

    Google Scholar 

  • Xu P (1992) Determination of surface gravity anomalies using gradiometric observables. Geophys J Int 110:321–332

    Article  Google Scholar 

  • Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135:505–514

    Article  Google Scholar 

  • Xu P, Rummel R (1994) Generalized ridge regression with applications in determination of potential fields. Manuscr Geod 20:8–20

    Google Scholar 

  • Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance components estimation in linear inverse ill-posed models. J Geod 80:69–81

    Article  Google Scholar 

  • Yang Y (1991) Robust Bayesian estimation. B Geod 65:145–150

    Google Scholar 

  • Yang Y (1993) Robust estimation and its applications. Bayi Publishing House, Peking

    Google Scholar 

  • Yang Y (1994) Robust estimation for dependent observations. Manuscr Geodaet 19:10–17

    Google Scholar 

  • Yang Y (1997a) Estimators of covariance matrix at robust estimation based on influence functions. ZfV 122(4):166–174

    Google Scholar 

  • Yang Y (1997b) Robust Kalman filter for dynamic systems. J Zhengzhou Inst Surveying Mapping 14:79–84

    Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73:268–274

    Article  Google Scholar 

  • Yang Y, Cui X (2008) Adaptively robust filter with multi adaptive factors. Surv Rev 40(309):260–270

    Article  Google Scholar 

  • Yang Y, Gao W (2005) Comparison of adaptive factors on navigation results. J Navigation 58:471–478

    Article  Google Scholar 

  • Yang Y, Gao W (2006) An optimal adaptive kalman filter with applications in navigation. J Geodesy 80:177–183

    Article  Google Scholar 

  • Yang Y, Gao W (2006) A new learning statistic for adaptive filter based on predicted residuals. Prog Nat Sci 16(8):833–837

    Article  Google Scholar 

  • Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geodesy 75:109–116

    Article  Google Scholar 

  • Yang Y, Tang Y, Li Q, Zou Y (2006) Experiments of adaptive filters for kinemetic GPS positioning applied in road information updating in GIS. J Surv Eng (in press)

    Google Scholar 

  • Yang YX et al (2005a) Combined adjustment project of national astronomical geodetic networks and 2000’ national GPS control network. Prog Nat Sci 15(5):435–441

    Article  Google Scholar 

  • Yang YX, Xu TH, Song LJ (2005) Robust estimation of variance components with application in global positioning system network adjustment. J Surv Eng ASCE 131(4): 107–112

    Google Scholar 

  • Zhou J (1985) On the Jie factor. Acta Geodaetica et Geophysica 5 (in Chinese)

    Google Scholar 

  • Zhou J (1989) Classical theory of errors and robust estimation. Acta Geod Cartogr Sinica 18:115–120

    Google Scholar 

  • Zhou J, Huang Y, Yang Y, Ou J (1997) Robust least squares method. Publishing House of Huazhong University of Science and Technology, Wuhan

    Google Scholar 

  • Zhu J (1996) Robustness and the robust estimate. J Geodesy 70(9):586–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guochang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, Y., Xu, G. (2013). Regularization and Adjustment. In: Xu, G. (eds) Sciences of Geodesy - II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28000-9_6

Download citation

Publish with us

Policies and ethics