Skip to main content

The Wave Equation: Control and Numerics

  • Chapter
  • First Online:
Control of Partial Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2048))

Abstract

In these Notes we make a self-contained presentation of the theory that has been developed recently for the numerical analysis of the controllability properties of wave propagation phenomena and, in particular, for the constant coefficient wave equation. We develop the so-called discrete approach. In other words, we analyze to which extent the semidiscrete or fully discrete dynamics arising when discretizing the wave equation by means of the most classical scheme of numerical analysis, shear the property of being controllable, uniformly with respect to the mesh-size parameters and if the corresponding controls converge to the continuous ones as the mesh-size tends to zero. We focus mainly on finite-difference approximation schemes for the one-dimensional constant coefficient wave equation. Using the well known equivalence of the control problem with the observation one, we analyze carefully the second one, which consists in determining the total energy of solutions out of partial measurements. We show how spectral analysis and the theory of non-harmonic Fourier series allows, first, to show that high frequency wave packets may behave in a pathological manner and, second, to design efficient filtering mechanisms. We also develop the multiplier approach that allows to provide energy identities relating the total energy of solutions and the energy concentrated on the boundary. These observability properties obtained after filtering, by duality, allow to build controls that, normally, do not control the full dynamics of the system but rather guarantee a relaxed controllability property. Despite of this they converge to the continuous ones. We also present a minor variant of the classical Hilbert Uniqueness Method allowing to build smooth controls for smooth data. This result plays a key role in the proof of the convergence rates of the discrete controls towards the continuous ones. These results are illustrated by means of several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Inequality (5.41) is just an example of a variety of similar observability problems: (a) one could observe the energy concentrated on the extreme x = 0 or in the two extremes x = 0 and 1 simultaneously; (b) the L 2(0, T)-norm of u x (1, t) could be replaced by some other norm; (c) one could also observe the energy concentrated in a subinterval (α, β) of (0, 1), etc.

  2. 2.

    Microlocal analysis deals, roughly speaking, with the possibility of localizing functions and its singularities not only in the physical space but also in the frequency domain. Localization in the frequency domain may be done according to the size of frequencies but also to sectors in the euclidean space in which they belong to. This allows introducing the notion of microlocal regularity; see, for instance, [48].

  3. 3.

    Note, however, that tangent rays may be diffractive or even enter the boundary. We refer to [6] for a deeper discussion of these issues.

  4. 4.

    We refer to Grisvard [45] for a discussion of these problems in the context of non-smooth domains.

  5. 5.

    Here and in what follows u N refers to the Nth component of the solution \(\vec{u}\) of the semidiscrete system, which obviously depends also on h.

  6. 6.

    This is a non generic fact that occurs only for the constant coefficient 1-d problem with uniform meshes.

  7. 7.

    Defining group velocity as the derivative of ω, i.e., of the curve in the dispersion diagram (see Fig. 5.5), is a natural consequence of the classical properties of the superposition of linear harmonic oscillators with close but not identical phases (see [21]). There is a one-to-one correspondence between the group velocity and the spectral gap which may be viewed as a discrete derivative of this diagram. In particular, when the group velocity decreases, the gap between consecutive eigenvalues also decreases.

  8. 8.

    Note that in Fig. 5.5, both for finite differences and elements, the semidiscrete and continuous curves are tangent at low frequencies. This is in agreement with the convergence property of the numerical scheme under consideration and with the fact that low-frequency wave packets travel essentially with the velocity of the continuous model.

  9. 9.

    For given initial data (y 0, y 1), the initial data for the controlled semidiscrete system (5.98) are taken to be approximations of (y 0, y 1) on the discrete mesh. The convergence of the controls \(\vec{{v}}_{h}\) in L 2(0, T) is then analyzed for the controls corresponding to these approximate initial data.

  10. 10.

    These results may also be obtained using discrete multiplier techniques (see [53] and [32] for an improved version with a sharp estimate of the time T(δ)).

  11. 11.

    This argument can be easily adapted to the case where the numerical approximation scheme is discrete in both space and time by taking discrete Fourier transforms in both variables.

References

  1. K. Ammari, M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Contr. Optim. Calc. Var. 6, 361–386 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Asch, G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation—a numerical study. ESAIM Contr. Optim. Calc. Var. 3, 163–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Auroux, J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Math. Acad. Sci. Paris 340(12), 873–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. G.A. Baker, J.H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13(2), 75–100 (1979)

    MathSciNet  MATH  Google Scholar 

  5. C. Bardos, F. Bourquin, G. Lebeau, Calcul de dérivées normales et méthode de Galerkin appliquée au problème de contrôlabilité exacte. C. R. Acad. Sci. Paris Sér. I Math. 313(11), 757–760 (1991)

    MathSciNet  MATH  Google Scholar 

  6. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Contr. Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. T.Z. Boulmezaoud, J.M. Urquiza, On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation. J. Sci. Comput. 31(3), 307–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Boyer, F. Hubert, J. Le Rousseau, Discrete carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. (9) 93(3), 240–276 (2010)

    Google Scholar 

  9. F. Boyer, F. Hubert, J. Le Rousseau, Discrete carleman estimates for elliptic operators in arbitrary dimension and applications,. SIAM J. Contr. Optim. 48, 5357–5397 (2010)

    Article  MATH  Google Scholar 

  10. F. Boyer, F. Hubert, J. Le Rousseau, Uniform null-controllability properties for space/time-discretized parabolic equations. Numer. Math. 118(4), 601–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Brauer, G. Leugering, On boundary observability estimates for semi-discretizations of a dynamic network of elastic strings. Contr. Cybern. 28(3), 421–447 (1999); Recent advances in control of PDEs.

    Google Scholar 

  12. A.L. Bughgeim, Volterra Equations and Inverse Problems, Inverse and Ill-posed Problems Series. (VSP, Utrecht, 1999)

    Google Scholar 

  13. A.L. Bukhgeĭm, M.V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems. Dokl. Akad. Nauk SSSR 260(2), 269–272 (1981)

    MathSciNet  Google Scholar 

  14. N. Burq, P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)

    Article  MATH  Google Scholar 

  15. N. Burq, G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. (4) 34(6), 817–870 (2001)

    Google Scholar 

  16. N. Burq, M. Zworski, Geometric control in the presence of a black box. J. Amer. Math. Soc. 17(2), 443–471 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Castro, S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Castro, S. Micu, A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28(1), 186–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Castro, E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Ration. Mech. Anal. 164(1), 39–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Cîndae, S. Micu, M. Tucsnak, An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 1283–1305 (2011)

    Google Scholar 

  21. G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation. (Springer, Berlin, 2002); With a foreword by R. Glowinski.

    Google Scholar 

  22. J.-M. Coron, S. Ervedoza, O. Glass, Uniform observability estimates for the 1-d discretized wave equation and the random choice method. Compt. Rendus Math. 347(9–10), 505–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Dáger, E. Zuazua, Wave Propagation, Observation and Control in 1{ -}d Flexible Multi-structures, Mathématiques & Applications (Berlin), vol. 50. (Springer, Berlin, 2006)

    Google Scholar 

  24. B. Dehman, G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Contr. Optim. 48(2), 521–550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Dehman, G. Lebeau, E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. (4) 36(4), 525–551 (2003)

    Google Scholar 

  26. T. Duyckaerts, X. Zhang, E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(1), 1–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: Applications to finite element schemes. Numer. Math. 113(3), 377–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Ervedoza, Observability properties of a semi-discrete 1D wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM Contr. Optim. Calc. Var. 16(2), 298–326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Ervedoza, Admissibility and observability for Schrödinger systems: Applications to finite element approximation schemes. Asymptot. Anal. 71(1–2), 1–32 (2011)

    MathSciNet  MATH  Google Scholar 

  30. S. Ervedoza, J. Valein, On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23(1), 163–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Ervedoza, C. Zheng, E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254(12), 3037–3078 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Ervedoza, E. Zuazua, On the numerical approximation of controls for waves, Springer Briefs in Mathematics, to appear.

    Google Scholar 

  33. S. Ervedoza, E. Zuazua, Uniform exponential decay for viscous damped systems, vol. 78, In: Advances in Phase Space Analysis of Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, vol. 78 (Birkhäuser Boston Inc., Boston, MA, 2009) pp. 95–112

    Google Scholar 

  34. S. Ervedoza, E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pure. Appl. 91, 20–48 (2009)

    MathSciNet  MATH  Google Scholar 

  35. S. Ervedoza, E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1375–1401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Ervedoza, E. Zuazua, Propagation, observation and numerical approximations of waves. Book in preparation.

    Google Scholar 

  37. X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Contr. Optim. 46(5), 1578–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Gérard, Microlocal defect measures. Comm. Part. Differ. Equat. 16(11), 1761–1794 (1991)

    Article  MATH  Google Scholar 

  39. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103(2), 189–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Glowinski, W. Kinton, M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Meth. Eng. 27(3), 623–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Glowinski, C.H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation. C. R. Acad. Sci. Paris Sér. I Math. 311(2), 135–142 (1990)

    MathSciNet  MATH  Google Scholar 

  43. R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7(1), 1–76 (1990)

    MathSciNet  MATH  Google Scholar 

  44. R. Glowinski, J.-L. Lions, J. He, Exact and Approximate Controllability for Distributed Parameter Systems, Encyclopedia of Mathematics and Its Applications, vol. 117, (Cambridge University Press, Cambridge, 2008); A numerical approach.

    Google Scholar 

  45. P. Grisvard, Contrôlabilité exacte des solutions de l’équation des ondes en présence de singularités. J. Math. Pure. Appl. (9) 68(2), 215–259 (1989)

    Google Scholar 

  46. A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Port. Math. 46(3), 245–258 (1989)

    MathSciNet  MATH  Google Scholar 

  47. L.F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302(12), 443–446 (1986)

    MATH  Google Scholar 

  48. L. Hörmander, Linear Partial Differential Operators. Die Grundlehren der mathematischen Wissenschaften, Bd. 116. (Academic Press, New York, 1963)

    Google Scholar 

  49. L.I. Ignat, E. Zuazua, Dispersive properties of a viscous numerical scheme for the Schrödinger equation. C. R. Math. Acad. Sci. Paris 340(7), 529–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. L.I. Ignat, E. Zuazua, A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence. C. R. Math. Acad. Sci. Paris 341(6), 381–386 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. L.I. Ignat, E. Zuazua, Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47(2), 1366–1390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. O.Y. Imanuvilov, M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement. Inverse Probl. 19(1), 157–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. J.A. Infante, E. Zuazua, Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann. 33, 407–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1), 367–379 (1936)

    Article  MathSciNet  Google Scholar 

  55. E. Isaacson, H.B. Keller, Analysis of Numerical Methods, (Wiley, New York, 1966)

    MATH  Google Scholar 

  56. V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 2nd edn. vol. 127, (Springer, New York, 2006)

    Google Scholar 

  57. J. Klamka, Controllability of Dynamical Systems, Mathematics and Its Applications (East European Series). vol. 48, (Kluwer, Dordrecht, 1991)

    Google Scholar 

  58. M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Probl. 8(4), 575–596 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. M.V. Klibanov, A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Inverse and Ill-posed Problems Series. (VSP, Utrecht, 2004)

    Google Scholar 

  60. V. Komornik, A new method of exact controllability in short time and applications. Ann. Fac. Sci. Toulouse Math. (5) 10(3), 415–464 (1989)

    Google Scholar 

  61. S. Labbé, E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems. Syst. Contr. Lett. 55(7), 597–609 (2006)

    Article  MATH  Google Scholar 

  62. C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM J. Math. Anal. 42(2), 785–832 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. G. Lebeau, Contrôle analytique. I. Estimations a priori. Duke Math. J. 68(1), 1–30 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  64. G. Lebeau, M. Nodet, Experimental study of the HUM control operator for linear waves. Exp. Math. 19(1), 93–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. G. Lebeau, E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141(4), 297–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  66. E.B. Lee, L. Markus, Foundations of Optimal Control Theory, 2nd edn. ed. by Robert E. Krieger (Melbourne, FL, 1986)

    Google Scholar 

  67. L. León, E. Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM Contr. Optim. Calc. Var. 8, 827–862 (2002); A tribute to J. L. Lions.

    Google Scholar 

  68. J.-L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. RMA 8. (Masson, Paris, 1988)

    Google Scholar 

  69. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. López, E. Zuazua, Some New Results Related to the Null Controllability of the 1-d Heat Equation, In: Séminaire sur les Équations aux Dérivées Partielles, 1997–1998, (École Polytech., Palaiseau, 1998) p. Exp. No. VIII, 22.

    Google Scholar 

  71. P. Loreti, M. Mehrenberger, An ingham type proof for a two-grid observability theorem. ESAIM: COCV 14(3), 604–631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. F. Macià, The Effect of Group Velocity in the Numerical Analysis of Control Problems for the Wave Equation, In: Mathematical and numerical aspects of wave propagation—WAVES 2003, (Springer, Berlin, 2003) pp. 195–200

    Google Scholar 

  73. F. Macià, Wigner measures in the discrete setting: High-frequency analysis of sampling and reconstruction operators. SIAM J. Math. Anal. 36(2), 347–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. F. Macià, E. Zuazua, On the lack of observability for wave equations: a Gaussian beam approach. Asymptot. Anal. 32(1), 1–26 (2002)

    MathSciNet  MATH  Google Scholar 

  75. A. Marica, Propagation and dispersive properties for the discontinuous Galerkin and higher order finite element approximations of the wave and Schrödinger equations, Ph D Thesis, Universidad Autónoma de Madrid, 2010

    Google Scholar 

  76. A. Marica, E. Zuazua, Localized solutions for the finite difference semi-discretization of the wave equation. C. R. Math. Acad. Sci. Paris 348(11–12), 647–652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91(4), 723–768 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Micu, E. Zuazua, An Introduction to the Controllability of Partial Differential Equations, ed. by T. Sari, Collection Travaux en Cours Hermannin Quelques Questions de Théorie du Contrôle, pp. 67–150 (2005)

    Google Scholar 

  79. L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation. J. Funct. Anal. 218(2), 425–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  80. L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Contr. Optim. 45(2), 762–772 (2006)

    Article  Google Scholar 

  81. A. Münch, A.F. Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation. ESAIM Contr. Optim. Calc. Var. 13(2), 265–293 (2007)

    Article  MATH  Google Scholar 

  82. M. Negreanu, A.-M. Matache, C. Schwab, Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput. 28(5), 1851–1885 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Negreanu, E. Zuazua, Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338(5), 413–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  84. A. Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J. Contr. Optim. 40(3), 777–800 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  85. K.D. Phung, Waves, Damped Wave and Observation, ed. by Ta-Tsien Li, Yue-Jun Peng, Bo-Peng Rao. Some Problems on Nonlinear Hyperbolic Equations and Applications, Series in Contemporary Applied Mathematics CAM 15, 2010.

    Google Scholar 

  86. J.-P. Puel, M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem. Inverse Probl. 12(6), 995–1002 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  87. J.V. Ralston, Solutions of the wave equation with localized energy. Comm. Pure Appl. Math. 22, 807–823 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  88. K. Ramdani, T. Takahashi, G. Tenenbaum, M. Tucsnak, A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J. Funct. Anal. 226(1), 193–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. K. Ramdani, T. Takahashi, M. Tucsnak, Semi-discrétisation en espace du problème de la stabilisation interne de l’équation des poutres. ESAIM Proc. 18, 48–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  90. K. Ramdani, T. Takahashi, M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations—application to LQR problems. ESAIM Contr. Optim. Calc. Var. 13(3), 503–527 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  91. J. Rauch, On convergence of the finite element method for the wave equation. SIAM J. Numer. Anal. 22(2), 245–249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  92. P.-A. Raviart, J.-M. Thomas, Introduction à l’analyse Numérique des Équations aux Dérivées Partielles, Collection Mathématiques Appliquées pour la Maitrise. [Collection of Applied Mathematics for the Master’s Degree]. (Masson, Paris, 1983)

    Google Scholar 

  93. L. Robbiano, Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Part. Differ. Equat. 16(4–5), 789–800 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  94. L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal. 10(2), 95–115 (1995)

    MathSciNet  MATH  Google Scholar 

  95. L. Rosier, B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex 22(4), 647–682 (2009)

    Article  MathSciNet  Google Scholar 

  96. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  97. T.I. Seidman, J. Yong, How violent are fast controls? II. Math. Contr. Signals Syst. 9(4), 327–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  98. E.D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics. vol. 6, 2nd edn. (Springer, New York, 1998); Deterministic finite-dimensional systems.

    Google Scholar 

  99. L.R. Tcheugoué Tebou, E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1d wave equation. Adv. Comput. Math. 26(1–3), 337–365 (2007)

    Article  MathSciNet  Google Scholar 

  100. L.R. Tcheugoué Tébou, E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95(3), 563–598 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  101. L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–136 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  102. M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups Birkäuser Advanced Texts, vol. 11, (Springer, Basel, 2009)

    Book  Google Scholar 

  103. G. Uhlmann, Developments in Inverse Problems Since Calderón’s Foundational Paper, In Harmonic Analysis and Partial Differential Equations. (Chicago, IL, 1996), Chicago Lectures in Mathematics, (Chicago, IL, 1999) pp. 295–345

    Google Scholar 

  104. R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM Studies in Applied Mathematics. vol. 5, (SIAM, Philadelphia, PA 1982); With a foreword by G. Birkhoff.

    Google Scholar 

  105. R.M. Young, An Introduction to Nonharmonic Fourier Series, 1st edn. (Academic Press, San Diego, CA, 2001)

    MATH  Google Scholar 

  106. X. Zhang, Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(1997), 1101–1115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  107. X. Zhang, C. Zheng, E. Zuazua, Exact controllability of the time discrete wave equation. Discrete and Continuous Dynamical Systems, (2007)

    Google Scholar 

  108. X. Zhang, E. Zuazua, Exact Controllability of the Semi-linear Wave Equation, Unsolved Problems in Mathematical Systems and Control Theory, (Princeton University Press, Princeton, 2004), pp. 173–178

    Google Scholar 

  109. E. Zuazua, Exact controllability for the semilinear wave equation. J. Math. Pures Appl. (9) 69(1), 1–31 (1990)

    Google Scholar 

  110. E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(1), 109–129 (1993)

    MathSciNet  MATH  Google Scholar 

  111. E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pure. Appl. (9) 78(5), 523–563 (1999)

    Google Scholar 

  112. E. Zuazua, Some Results and Open Problems on the Controllability of Linear and Semilinear Heat Equations, In Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999), Progress in Nonlinear Differential Equations and Their Applications, vol. 46, (Birkhäuser Boston, Boston, MA, 2001), pp. 191–211

    Google Scholar 

  113. E. Zuazua, Controllability of partial differential equations and its semi-discrete approximations. Discrete Contin. Dyn. Syst. 8(2), 469–513 (2002); Current developments in partial differential equations (Temuco, 1999)

    Google Scholar 

  114. E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  115. E. Zuazua, Control and Numerical Approximation of the Wave and Heat Equations, In International Congress of Mathematicians. vol. 3, European Mathematical Society, (Zürich, 2006), pp. 1389–1417

    Google Scholar 

  116. E. Zuazua, Control and stabilization of waves on 1-d networks, “Traffic flow on networks”, B. Piccoli and M. Rascle, eds., Lecture Notes in Mathematics- C.I.M.E. Foundation Subseries, Springer Verlag, to appear

    Google Scholar 

Download references

Acknowledgements

When preparing the last version of this manuscript we were supported by Alejandro Maas Jr., internship student from the Universidad Técnica Federico Santa María (UTFSM), Chile, visiting BCAM for two months early 2011. He contributed to improve our plots and also to run the numerical experiments we present here. We express our gratitude to him for his efficient and friendly help. This work was supported by the ERC Advanced Grant FP7–246775 NUMERIWAVES, the Grant PI2010–04 of the Basque Government, the ESF Research Networking Program OPTPDE and Grant MTM2008–03541 of the MICINN, Spain. The first author acknowledges the hospitality and support of the Basque Center for Applied Mathematics where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Ervedoza .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ervedoza, S., Zuazua, E. (2012). The Wave Equation: Control and Numerics. In: Control of Partial Differential Equations. Lecture Notes in Mathematics(), vol 2048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27893-8_5

Download citation

Publish with us

Policies and ethics