Skip to main content

Control of Electrochemical Chaos and Unstable Steady-States

  • Chapter
  • First Online:
Self-Organization in Electrochemical Systems II

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1178 Accesses

Abstract

Various ways to achieve stabilization of chaotic and unstable steady-states in electrochemical systems are described: the map-based control algorithm, the derivative control strategy, the delayed-feedback control, and sinusoidal forcing. These algorithms are shown to work for both experimental systems (including Cu and Ni electrodissolution in acidic media) and their theoretical models. The controls manifest itself in: emerging periodic behavior from chaotic regime, the stabilization of a single unstable steady-state in a periodic or chaotic oscillator, but also in possible increase in the complexity of system’s dynamics (i.e., transition from period-1 to period-n oscillations). In most cases the stabilization of temporal instabilities is described, but also a control of spatiotemporal chaotic dynamics can be achieved using sinusoidal forcing. Regarding the noise-induced order, for the Ni electrodissolution in sulfuric acid medium, the effect of stochastic noise: the coherence resonance, meaning that the system exhibits maximum regularity of noise-induced oscillations for the optimum noise-level, is outlined. Finally, the stabilization of oscillations in the system with spontaneous drift of its characteristics is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coherence resonance (CR), as meaning the emergence of coherence in noise-induced oscillations, is thus essentially different from stochastic resonance (SR) - amplification of deterministic (periodic) signal upon addition of noise.

References

  1. Schuster HG, Just W (2005) Deterministic chaos. An introduction, 4th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Schöll E, Schuster HG (eds) (2008) Handbook of chaos control, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199

    Article  Google Scholar 

  4. Pecora LM, Tl C (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  Google Scholar 

  5. Peng B, Petrov V, Showalter K (1991) Controlling chemical chaos. J Phys Chem 95:4957–4959

    Article  CAS  Google Scholar 

  6. Peng B, Petrov V, Showalter K (1992) Controlling low-dimensional chaos by proportional feedback. Physica A 199:210–216

    Article  Google Scholar 

  7. Parmananda P (1996) Controlling chaos in a model for an electrochemical oscillator using a map-based algorithm. Electrochim Acta 41:377–380

    Article  CAS  Google Scholar 

  8. Koper MTM, Gaspard P (1991) Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator. J Phys Chem 95:4945–4947

    Article  CAS  Google Scholar 

  9. Koper MTM, Gaspard P (1992) The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J Chem Phys 96:7797–7813

    Article  CAS  Google Scholar 

  10. Kiss IZ, Gáspár V, Nyikos L, Parmananda P (1997) Controlling electrochemical chaos in the copper-phosphoric acid system. J Phys Chem A 101:8668–8674

    Article  CAS  Google Scholar 

  11. Petrov V, Peng B, Showalter K (1992) A map-based algorithm for controlling low-dimensional chaos. J Chem Phys 96:7506–7513

    Article  CAS  Google Scholar 

  12. Rollins RW, Parmananda P, Sherard P (1993) Controlling chaos in highly dissipative systems: a simple recursive algorithm. Phys Rev E 47:R780–R783

    Article  Google Scholar 

  13. Dressler U, Nitsche G (1992) Controlling chaos using time delay coordinates. Phys Rev Lett 68:1–4

    Article  Google Scholar 

  14. Parmananda P, Sherard P, Rollins RW, Dewald HD (1993) Control of chaos in an electrochemical cell. Phys Rev E 47:R3003–R3006

    Article  CAS  Google Scholar 

  15. Kiss IZ, Gáspár V (2000) Controlling chaos with artificial neural network: numerical studies and experiments. J Phys Chem A 104:8033–8037

    Google Scholar 

  16. Bielawski S, Bouazaoui M, Derozier D, Glorieux P (1993) Stabilization and characterization of unstable steady states in a laser. Phys Rev A 47:3276–3279

    Article  Google Scholar 

  17. Parmananda P, Rhode MA, Johnson GA, Rollins RW, Dewald HD, Markworth AJ (1994) Stabilization of unstable steady states in an electrochemical system using derivative control. Phys Rev E 49:5007–5011

    Article  CAS  Google Scholar 

  18. Markworth AJ, McCoy JK, Rollins RW, Parmananda P (1992) In: Stringer J, Kim J (eds) Applied chaos. Wiley, New York, NY, p 227

    Google Scholar 

  19. McCoy JK, Parmananda P, Rollins RW, Markworth AJ (1993) Chaotic dynamics in a model of metal passivation. J Mater Res 8:1858–1865

    Article  CAS  Google Scholar 

  20. Parmananda P, Eiswirth M (1996) Stabilizing unstable fixed points using derivative control. J Phys Chem 100:16568–16570

    Article  CAS  Google Scholar 

  21. Talbot JB, Oriani RA (1985) Steady state multiplicity and oscillations in passive film formation. Electrochim Acta 1985:1277–1284

    Article  Google Scholar 

  22. Hjelmfelt A, Ross J (1994) Experimental stabilization of unstable steady states in oscillatory and excitable reaction systems. J Phys Chem 98:1176–1179

    Article  CAS  Google Scholar 

  23. Strasser P, Lübke M, Parmananda P, Eiswirth M, Ertl G (1998) Mechanistic analysis of electrochemical oscillators using derivative feedback control techniques. J Phys Chem B 102:3227–3237

    Article  CAS  Google Scholar 

  24. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428

    Article  Google Scholar 

  25. Just W, Bernard T, Ostheimer M, Reibold E, Benner H (1997) Mechanism of time-delayed feedback control. Phys Rev Lett 78:203–206

    Article  CAS  Google Scholar 

  26. Parmananda P, Madrigal R, Rivera M, Nyikos L, Kiss IZ, Gáspár V (1999) Stabilization of unstable steady-states and periodic orbits in an electrochemical system using delayed-feedback control. Phys Rev E 59:5266–5271

    Article  CAS  Google Scholar 

  27. Kiss IZ, Kazsu Z, Gáspár V (2006) Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control. Chaos 16:033109-1–0033109-7

    Article  Google Scholar 

  28. Parmananda P, Rivera M, Madrigal R (1999) Altering oscillatory dynamics of an electrochemical system using external forcing. Electrochim Acta 44:4677–4683

    Article  CAS  Google Scholar 

  29. Parmananda P, Rivera M, Green BJ, Hudson JL (2005) Controlling complexity using forcing: simulations and experiments. Appl Math Comput 164:467–491

    Article  Google Scholar 

  30. Hubler A (1989) Adaptive control of chaotic systems. Helv Phys Acta 62:343–346

    Google Scholar 

  31. Jackson EA (1990) The entrainment and migration controls of multiple-attractor systems. Phys Lett A 151:478–484

    Article  Google Scholar 

  32. Mettin R, Kurz T (1995) Optimized periodic control of chaotic systems. Phys Lett A 206:331–339

    Article  CAS  Google Scholar 

  33. Mettin R, Hubler A, Scheeline A, Lauterborn W (1995) Parametric entrainment control of chaotic systems. Phys Rev E 51:4065–4075

    Article  CAS  Google Scholar 

  34. Bär M, Gottschalk N, Eiswirth M, Ertl G (1994) Spiral waves in a surface reaction: model calculations. J Chem Phys 100:1202–1214

    Article  Google Scholar 

  35. Bär M, Eiswirth M (1993) Turbulence due to spiral breakup in a continuous excitable medium. Phys Rev E 48:R1635–R1637

    Article  Google Scholar 

  36. Fei Z, Hudson JL (1998) Chaotic oscillations on arrays of iron electrodes. Ind Eng Chem Res 37:2172–2179

    Article  CAS  Google Scholar 

  37. Baier G, Sven S, Chen JP, Hoff AA (1999) Local stimulation induces long-range order in spatio-temporal disorder. J Chem Phys 110:3251–3255

    Article  CAS  Google Scholar 

  38. Parmananda P, Eiswirth M (1999) Suppression of chemical turbulence using feedbacks and forcing. J Phys Chem A 103:5510–5514

    Article  CAS  Google Scholar 

  39. Camacho P, Lechleiter JD (1995) In: Brock GR, Ackrill K (eds) Calcium waves, gradients and oscillations. Wiley, Chichester

    Google Scholar 

  40. Ding M, Ding EJ, Ditto WL, Gluckman B, In V, Peng JH, Spano ML, Yang W (1997) Control and synchronization of chaos in high dimensional systems: review of some recent results. Chaos 7:644–652

    Article  CAS  Google Scholar 

  41. Serra R, Andretta M, Compiani M, Zanarini G (1986) Introduction to the physics of complex systems. Pergamon Press, Oxford

    Google Scholar 

  42. Matsumodo K, Tsuda I (1983) Noise-induced order. J Stat Phys 31:87–106

    Article  Google Scholar 

  43. Matsumoto K (1984) Noise-induced order II. J Stat Phys 34:111–127

    Article  Google Scholar 

  44. Doi S (1989) A chaotic map with a flat segment can produce a noise-induced order. J Stat Phys 55:941–964

    Article  Google Scholar 

  45. Kiss IZ, Hudson JL, Escalera Santos GJ, Parmananda P (2003) Experiments on coherence resonance: noisy precursors to Hopf bifurcation. Phys Rev E 67:035201-1–035201-3

    Article  Google Scholar 

  46. Lindner B, Schimansky-Geier L (2000) Coherence and stochastic resonance in a two-state system. Phys Rev E 61:6103–6110

    Article  CAS  Google Scholar 

  47. Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57:265–285

    Article  CAS  Google Scholar 

  48. Bertocci U, Huet F, Jaoul B, Rousseau P (2000) Frequency analysis of transients in electrochemical noise: mathematical relationships and computer simulations. Corrosion 56:675–683

    Google Scholar 

  49. Darowicki K, Zieliński A (2004) The analysis of stationary electrochemical noise. Pol J Chem 78:1261–1268

    CAS  Google Scholar 

  50. Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49:1493–1572

    Article  CAS  Google Scholar 

  51. Blanc G, Gabrielli C, Keddam M (1975) Measurement of the electrochemical noise by a cross correlation method. Electrochim Acta 20:687–689

    Article  CAS  Google Scholar 

  52. Switzer JA, Huang CJ, Huang LY, Switzer ER, Kammler DR, Golden TD, Bohannan EW (1998) Electrochemical self-assembly of copper/cuprous oxide layered nanostructures. J Am Chem Soc 120:3530–3531

    Article  CAS  Google Scholar 

  53. Bonnefont A, Kostecki R, McLarnon F, Arrayet JC, Servant L, Argoul F (1999) In situ atomic force microscopy imaging of electrodeposition of mixed layers of copper/cuprous oxide. J Electrochem Soc 149:4101–4104

    Article  Google Scholar 

  54. Zhang Z, Leng WH, Cai QY, Cao FH, Zhang JQ (2005) Study of the zinc electroplating process using electrochemical noise technique. J Electroanal Chem 578:357–367

    Article  CAS  Google Scholar 

  55. Schmid G, Goychuk I, Hänggi P (2001) Stochastic resonance as a collective property of ion channel assemblies. Europhys Lett 56:22–28

    Article  CAS  Google Scholar 

  56. Rivera M, Escalera Santos GJ, Uruchurtu-Chavarín J, Parmananda P (2005) Intrinsic coherence resonance in an electrochemical cell. Phys Rev E 72:030102-1–030102-4

    Article  Google Scholar 

  57. Pagitsas M, Diamantopoulou A, Sazou D (2002) General and pitting corrosion deduced from current oscillations in the passive–active transition state of the Fe∣H2SO4 electrochemical system. Electrochim Acta 47:4163–4179

    Article  CAS  Google Scholar 

  58. Sazou D, Diamantopoulou A, Pagitsas M (2000) Chemical perturbation of the passive–active transition state of Fe in a sulfuric acid solution by adding halide ions. Current oscillations and stability of the iron oxide film. Electrochim Acta 45:2753–2769

    Article  CAS  Google Scholar 

  59. Pagitsas M, Diamantopoulou SD (2003) A point defect model for the general and pitting corrosion of iron|oxide|electrolyte interface deduced from current oscillations. Chaos, Solitons Fract 17:263–275

    Article  CAS  Google Scholar 

  60. Sazou D, Pagitsas M (2003) Non-linear dynamics of the passivity breakdown of iron in acidic solutions. Chaos, Solitons Fract 17:505–522

    Article  CAS  Google Scholar 

  61. Nagao R, Sitta E, Varela H (2010) Stabilizing nonstationary electrochemical time series. J Phys Chem 114:22262–22268

    CAS  Google Scholar 

  62. Zhang J, Datta R (2005) Electrochemical preferential oxidation of CO in reformate. J Electrochem Soc 152:A1180–A1187

    Article  CAS  Google Scholar 

  63. Lu H, Rihko-Struckman L, Hanke-Rauschenbach R (2009) Improved electrochemical CO removal via potential oscillations in serially connected PEM fuel cells with PtRu anodes. Electrochim Acta 54:1184–1191

    Article  CAS  Google Scholar 

  64. Mota A, Lopes PP, Ticianelli EA, Gonzalez ER, Varela H (2010) Complex oscillatory response of a PEM fuel cell fed with H2/CO and oxygen. J Electrochem Soc 157:B1301–B1304

    Article  CAS  Google Scholar 

  65. Lopes PP, Ticianelli EA, Varela H (2011) Potential oscillations in a proton exchange membrane fuel cell with a Pd–Pt/C anode. J Power Sources 119:84–89

    Article  Google Scholar 

  66. Richter PH, Ross J (1981) Concentration oscillations and efficiency: glycolysis. Science 211:715–717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Control of Electrochemical Chaos and Unstable Steady-States. In: Self-Organization in Electrochemical Systems II. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27627-9_7

Download citation

Publish with us

Policies and ethics