Skip to main content

Processing of Peptides

  • Chapter
  • First Online:
Plant Signaling Peptides

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 16))

  • 1213 Accesses

Abstract

Plant peptide signaling molecules are subject to proteolytic processing and/or to various forms of posttranslational modifications. Most signaling peptides are secreted and made as prepropeptides from which signal peptides are removed as they are translocated across the endoplasmic reticulum membrane. Proteolytic processing of propeptides may be required to regulate their activity, for peptides to fold properly, to navigate the secretory pathway, and to diffuse freely in the apoplast. Posttranslational modifications of peptides in plants include tyrosine sulfation, proline hydroxylation, and hydroxyproline arabinosylation. The proteases responsible for processing some plant peptides have been determined and shown considerable specificity for their propeptide substrates. New high-throughput screening technologies can be used to match up peptides to their processing machinery or identify propeptide substrates of various proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloy P, Companys V, Vendrell J, Aviles FX, Fricker LD, Coll M, Gomis-Ruth FX (2001) The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modelling of regulatory carboxypeptidases. J Biol Chem 276:16177–16184

    Article  PubMed  CAS  Google Scholar 

  • Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA 104:18333–18338

    Article  PubMed  CAS  Google Scholar 

  • Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131

    PubMed  CAS  Google Scholar 

  • Brix K, Linke M, Tepel C, Herzog V (2001) Cysteine proteinases mediate extracellular prohormone. Biol Chem 382:717–725

    Article  PubMed  CAS  Google Scholar 

  • Casamitjana-Martínez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, Scheres B (2003) Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 13:1435–1441

    Article  PubMed  Google Scholar 

  • Cheng D, Espenshade PJ, Slaughter C, Jaen JC, Brown MS, Goldstein JL (1999) Secreted site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins. J Biol Chem 274:22805–22812

    Article  PubMed  CAS  Google Scholar 

  • Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA (2010) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715

    Article  PubMed  CAS  Google Scholar 

  • Deperthes D (2002) Phage display substrate: a blind method for determining protease specificity. Biol Chem 383:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic MA, Oakes M, Wong CE, Singh M, Bhalla P, Kusumawati L, Imin N (2011) Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to extracellular fluids of Medicago and soybean. J Exp Bot 62:4649–4659

    Article  PubMed  CAS  Google Scholar 

  • Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523

    Article  PubMed  CAS  Google Scholar 

  • Espenshade PJ, Cheng D, Goldstein JL, Brown MS (1999) Autocatalytic processing of site-1 protease removes propeptides and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 274:22795–22804

    Article  PubMed  CAS  Google Scholar 

  • Fisher JM, Scheller RH (1988) Prohormone processing and the secretory pathway. J Biol Chem 263:16515–16518

    PubMed  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Ghosalia DN, Salisbury CM, Maly DJ, Ellman JA, Diamond SL (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics 5:1292–1298

    Article  Google Scholar 

  • Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10:520–526

    Article  PubMed  CAS  Google Scholar 

  • Henrich S, Lindberg I, Bode W, Than ME (2005) Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 345:211–227

    Article  PubMed  CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:2610098–2610103

    Article  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 13:845–848

    Article  Google Scholar 

  • Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, Sakagami Y (2010) Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol 51:1–8

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic stress signaling. Plant J 51:897–909

    Article  PubMed  CAS  Google Scholar 

  • Matos JL, Fiori CS, Silva-Filho MC, Moura DS (2008) A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana. FEBS Lett 582:3343–3347

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y (2011) Posttranslational modifications in peptide hormone. Plant Cell Physiol 52:5–13

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 24:1470–1472

    Article  Google Scholar 

  • Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067

    Article  PubMed  CAS  Google Scholar 

  • Matthews DJ, Wells JA (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Ryan CA (1992) The organization of the prosystemin gene. Plant Mol Biol 20:405–409

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco Cardenas M, Ryan CA (1992) Structure expression and antisense inhibition of the system in precursor gene. Science 255:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Mitchum MG, Wang X, Davis EL (2008) Diverse and conserved roles of CLE peptides. Curr Opin Plant Biol 11:75–81

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H (1988) Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun 156:246–254

    Article  PubMed  CAS  Google Scholar 

  • Moore KL (2003) The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 278:24243–24246

    Article  PubMed  CAS  Google Scholar 

  • Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22:15–24

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Clark SE (2006) Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:726–733

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Guo Y, Jin H, Hartsell J, Clark SE (2011) Characterization of a CLE processing activity. Plant Mol Biol 75:67–75

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–160

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Mundy J, Skriver K (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol 2:441–451

    PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Storch MJ, Anderson RGW, Vassalli JD, Perrelet A (1987) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49:865–868

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. J Biol Chem 278:30044–30050

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induce wound-inducible inhibitor proteins. Science 253:895–898

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001a) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA Jr (2001b) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Barona G, Ryan CA (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense related genes. Proc Natl Acad Sci USA 107:14921–14925

    Article  PubMed  CAS  Google Scholar 

  • Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, Kopka J, Altmann T (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput Biol 1:e40

    Article  PubMed  Google Scholar 

  • Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14:S251–S264

    PubMed  CAS  Google Scholar 

  • Schnabel E, Mains RE, Farquhar MG (1989) Proteolytic processing of pro-ACTH/endorphin begins in the Golgi complex of pituitary corticotropes and AtT-20 cells. Mol Endocrinol 3:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Shinohara H, Matsubayashi Y (2010) Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure. Curr Opin Plant Biol 13:515–551

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Liu JX, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J 56:219–227

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J 59:930–939

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39

    Article  PubMed  CAS  Google Scholar 

  • Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A (2000) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA 97:1920–1925

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Shimosato H, Shiba H, Funato M, Che FS, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538

    Article  PubMed  CAS  Google Scholar 

  • Tian S, Jianhua W (2010) Comparative study of the binding pockets of mammalian proprotein convertases and its implications for the design of specific small molecule inhibitors. Int J Biol Sci 6:89–95

    Article  PubMed  Google Scholar 

  • Tooze J, Hollinshead M, Frank R, Burke B (1987) An antibody specific for an endoproteolytic cleavage site provides evidence that pro-opiomelanocortin is packaged into secretory granules in AtT20 cells before its cleavage. J Cell Biol 105:155–162

    Article  PubMed  CAS  Google Scholar 

  • Turk BE, Cantley LC (2003) Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr Opin Chem Biol 7:84–90

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  PubMed  CAS  Google Scholar 

  • Wheeler JI, Irving HR (2010) Evolutionary advantages of secreted peptide signaling molecules in plants. Funct Plant Biol 37:382–394

    Article  CAS  Google Scholar 

  • Wickner RB (1974) Chromosomal and nonchromosomal mutations affecting the “killer character” of Saccharomyces cerevisiae. Genetics 76:423–432

    PubMed  CAS  Google Scholar 

  • Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Shields D (1993) Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells. J Cell Biol 122:1169–1184

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Martin S, Lipkind G, LaMendola J, Steiner DF (1998) Regulatory roles of the P domain of the subtilisin-like prohormone convertases. J Biol Chem 273:11107–11114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Howell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srivastava, R., Howell, S.H. (2012). Processing of Peptides. In: Irving, H., Gehring, C. (eds) Plant Signaling Peptides. Signaling and Communication in Plants, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27603-3_11

Download citation

Publish with us

Policies and ethics