Skip to main content

Abstract

Optical characteristics of nanocomposites provide deeper insights into the overall function of these materials. This chapter describes steady-state and time-resolved optical properties of nanocomposites in the UV-Vis range derived through the analysis of a variety of nanoparticle architectures and the extrapolation of general trends from these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447:441

    ADS  Google Scholar 

  2. Hillhouse HW, Beard MC (2009) Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr Opin Coll Int Sci 14:245

    Google Scholar 

  3. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462

    ADS  Google Scholar 

  4. Borensztein Y, Delannoy L, Djedidi A, Barrera RG, Louis C (2010) Monitoring of the plasmon resonance of gold nanoparticles in Au/TiO2 catalyst under oxidative and reducing atmospheres. J Phys Chem C 114:9008–9021

    Google Scholar 

  5. Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1:1051–1054

    Google Scholar 

  6. Coe S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800

    ADS  Google Scholar 

  7. Tessler N, Medvedev V, Kazes M, Kan SH, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506

    ADS  Google Scholar 

  8. Steckel JS, Snee P, Coe-Sullivan S, Zimmer JR, Halpert JE, Anikeeva P, Kim LA, Bulovic V, Bawendi MG (2006) Color-saturated green-emitting QD-LEDs. Angew Chem Int Ed 45:5796

    Google Scholar 

  9. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354

    ADS  Google Scholar 

  10. Schlamp MC, Peng XG, Alivisatos APJ (1997) Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. Appl Phys 82:5837

    Google Scholar 

  11. Mattoussi H, Radzilowski LH, Dabbousi BO, Thomas EL, Bawendi MG, Rubner MF (1998) Properties of CdSe nanocrystal dispersions in the dilute regime: structure and interparticle interactions. J Appl Phys 83:7965

    ADS  Google Scholar 

  12. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mat 4:435

    ADS  Google Scholar 

  13. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe − ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142

    Google Scholar 

  14. Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013

    ADS  Google Scholar 

  15. Wang RY, Feser JP, Lee JS, Talapin DV, Segalman R, Majumdar A (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8:2283

    ADS  Google Scholar 

  16. Kovalenko MV, Scheele M, Talapin DV (2009) Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324:1417

    ADS  Google Scholar 

  17. Ridley BA, Nivi B, Jacobson JM (1999) All-inorganic field effect transistors fabricated by printing. Science 286:746

    Google Scholar 

  18. Lee S, Jeong S, Kim D, Park BK, Moon J (2007) Superlattices. Microstruct 42:361

    Google Scholar 

  19. Schneider JJ, Hoffmann RC, Engstler J, Soffke O, Jaegermann W, Issanin A, Klyszcz A (2008) A printed and flexible field-effect transistor device with nanoscale zinc oxide as active semiconductor material. Adv Mater 20:3383

    Google Scholar 

  20. Talapin DV, Mekis L, Gotzinger S, Kornowski A, Benson O, Weller H (2004) CdSe/CdS/ZnS and CdSe/ZnSe/Zns core-shell-shell nanocrystals. J Phys Chem B 108:18826

    Google Scholar 

  21. Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86

    ADS  Google Scholar 

  22. Lee JS, Shevchenko EV, Talapin DV (2008) Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via interparticle charge transfer. J Am Chem Soc 130:9673

    Google Scholar 

  23. Erwin SC, Zu LJ, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Doping semiconductor nanocrystals. Nature 436:91

    ADS  Google Scholar 

  24. Salgueirino-Maceira V, Correa-Duarte MA (2007) Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater 19:4131

    Google Scholar 

  25. Son DI, Kim JH, Park DH, Choi WK, Li F, Ham JH, Kim TW (2008) Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole. Nanotechnology 19:055204

    ADS  Google Scholar 

  26. Liz-Marzan LM, Mulvaney P (2003) The assembly of coated nanocrystals. J Phys Chem B 107:7312

    Google Scholar 

  27. Das BC, Batabyal SK, Pal AJ (2007) A bit per particle: electrostatic assembly of CdSe quantum dots as memory elements. Adv Mater 19:4172

    Google Scholar 

  28. Das BC, Pal AJ (2008) Memory applications and electrical bistability of semiconducting nanoparticles: do the phenomena depend on bandgap? Small 4:542

    MathSciNet  Google Scholar 

  29. Ghosh B, Sahu S, Pal AJ (2008) Core-shell nanoparticles: an approach to enhance electrical bistability. J Phys Chem C 112:11290

    Google Scholar 

  30. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystats. Small 5:154

    Google Scholar 

  31. Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195

    Google Scholar 

  32. Yao WT, Yu SH (2008) Synthesis of semiconducting functional materials in solution: from II-VI semiconductor to inorganic–organic hybrid semiconductor nanomaterials. Adv Funct Mater 18:3357

    Google Scholar 

  33. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of nanocrystal solids as electronic and optoelectronic materials. Chem Rev 110:389–458

    Google Scholar 

  34. Kumar S, Jones M, Lo SS, Scholes GD (2007) Nanorod heterostructures showing photoinduced charge separation. Small 3:1633

    Google Scholar 

  35. Carbone L, Nobile C, Giorgi MD, Sala FD, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR, Nadasan M, Silvestre AF, Chiodo L, Kudera S, Cingolani R, Krahne R, Manna L (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7:2942

    ADS  Google Scholar 

  36. Dorfs D, Salant A, Popov I, Banin U (2008) ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. Small 4:1319

    Google Scholar 

  37. Lo SS, Khan Y, Jones M, Scholes GD (2009) Temperature and solvent dependence of CdTe/CdSe heterostructure nanorod spectra. J Chem Phys 131:084714

    ADS  Google Scholar 

  38. Zhong H, Scholes GD (2009) Shape tuning of type II CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth. J Am Chem Soc 131:9170–9191

    Google Scholar 

  39. Shieh F, Saunders AE, Korgel BA (2005) General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J Phys Chem B 119:8539

    Google Scholar 

  40. Halpert JE, Porter VJ, Zimmer JP, Bawendi MG (2006) Synthesis of CdSe/CdTe nanobarbells. J Am Chem Soc 128:12590

    Google Scholar 

  41. Kirsanova M, Nemchinov A, Hewa-Kasakarage NN, Schmall N, Zamkov M (2009) Synthesis of ZnSe/CdS/ZnSe nano-barbells showing photoinduced charge separation. Chem Mater 21:4305

    Google Scholar 

  42. Shi W, Zeng H, Sahoo Y, Ohulchanskyy TY, Ding Y, Wang ZL, Prasad PN (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6:875

    ADS  Google Scholar 

  43. Heng Y, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379

    ADS  Google Scholar 

  44. Carbone L, Kudera S, Carlino E, Parak WJ, Giannini C, Cingolani R, Manna L (2006) Multiple Wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J Am Chem Soc 128:748

    Google Scholar 

  45. Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190

    ADS  Google Scholar 

  46. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787

    ADS  Google Scholar 

  47. Mokari T, Sztrum CG, Salant A, Rabani E, Banin U (2005) Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater 4:855

    ADS  Google Scholar 

  48. Carbone L, Kudera S, Giannini C, Ciccarella G, Cingolani R, Cozzoli PD, Manna L (2006) Selective reactions on the tips of colloidal semiconductor nanorods. J Mate Chem 16:3952

    Google Scholar 

  49. Menagen G, Macdonald JE, Shemesh Y, Popov I, Banin U (2009) Au growth on semiconductor NAnorods: photoinduced versus thermal growth mechanisms. J Am Chem Soc 131:17406–17411

    Google Scholar 

  50. Habas SE, Yang P, Mokari T (2008) Selective growth of metal and binary metal tips on CdS nanorods. J Am Chem Soc 130:3294

    Google Scholar 

  51. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019

    Google Scholar 

  52. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468

    Google Scholar 

  53. Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J Phys Chem B 101:9463

    Google Scholar 

  54. Zhao JL, Zhang JY, Jiang CY, Bohnenberger J, Basche T, Mews A (2004) Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J Appl Phys 96:3206

    ADS  Google Scholar 

  55. Nizamoglu S, Ozel T, Sari E, Demir HV (2007) White light generation tuned by dual hybridization of nanocrystals and conjugated polymers. Nanotechnology 18:065709

    ADS  Google Scholar 

  56. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (2013) Semiconductor nanocrystals as fluorescent biological labels. Science 1998:281

    Google Scholar 

  57. Son DH, Hughes SM, Yin YD, Alivisatos AP (2004) Cation exchange reactions-in ionic nanocrystals. Science 306:1009

    ADS  Google Scholar 

  58. Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Trends Anal Chem 25:207

    Google Scholar 

  59. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802

    ADS  Google Scholar 

  60. Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126:1324

    Google Scholar 

  61. Banin U, Bruchez M, Alivisatos AP, Ha T, Weiss S (1999) Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals; Chemla, D. S. J Chem Phys 110:1195

    Google Scholar 

  62. Li YC, Zhong HZ, Li R, Zhou Y, Yang CH, Li YF (2006) High-yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTel−x nanocrystals. Adv Funct Mater 16:1705

    Google Scholar 

  63. Zhou Y, Li YC, Zhong HZ, Hou JH, Ding YQ, Yang CH, Li YF (2006) Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTel−x nanocrystals. Nanotechnology 17:4041

    ADS  Google Scholar 

  64. Zhang Y, Wang LW, Mascarenhas A (2007) “Quantum coaxial cables” for solar energy harvesting. Nano Lett 7:1264

    ADS  Google Scholar 

  65. Luque A, Marti A, Nozik AJ (2007) Solar cells based on quantum dots: multiple exciton generation and intermediate bands. Mrs Bull 32:236

    Google Scholar 

  66. Nemchinov A, Kirsanova M, Hewa-Kasakarage NN, Zamkov M (2008) Synthesis and characterization of type II ZnSe/CdS core/shell nanocrystals. J Phys Chem C 112:9301

    Google Scholar 

  67. Doose S (1856) Optical Amplification from Single Excitons in Colloidal Quantum Dots. Small 2007:11

    Google Scholar 

  68. Chan Y, Steckel JS, Snee PT, Caruge JM, Hodgkiss JM, Nocera DG, Bawendi MG (2005) Blue semiconductor nanocrystal laser. Appl Phys Lett 86:073102

    ADS  Google Scholar 

  69. Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson O, Weller H (2004) CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 108:18826–18831

    Google Scholar 

  70. Chen Y, Vela J, Htoon H, Casson JL, Werder DJ, Bussian DA, Klimov VI, Hollingsworth JA (2008) “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J Am Chem Soc 130:5026

    Google Scholar 

  71. Pathan HM, Lokhande CD (2004) Deposition of metal chalcogenide thin films by successive ionic layer absorption and reaction (SILAR) method. Bull Mater Sci 27:85

    Google Scholar 

  72. Pietryga JM, Werder DJ, Williams DJ, Casson JL, Schaller RD, Klimov VI, Hollingsworth JA (2008) Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J Am Chem Soc 130:4879–4885

    Google Scholar 

  73. Neo MS, Venkatram N, Li GS, Chin WS, Ji W (2010) Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties. J Phys Chem C 114:18037–18044

    Google Scholar 

  74. Acharya KP, Khnayzer RS, O’Connor T, Diederich G, Kirsanova M, Klinkova A, Roth D, Kinder E, Imboden M, Zamkov M (2011) The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals. Nano Lett 11:2919

    Google Scholar 

  75. Hewa-Kasakarage NN, Kirsanova M, Nemchinov A, Schmall N, El-Khoury PZ, Tarnovsky AN, Zamkov M (2009) Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J Am Chem Soc 131:1328

    Google Scholar 

  76. Fisher BR, Eisler HJ, Stott NE, Bawendi MG (2004) Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetime. J Phys Chem B 108:143

    Google Scholar 

  77. Hewa-Kasakarage NN, El-Khoury PZ, Tarnovsky AN, Kirsanova M, Nemitz I, Nemchinov A, Zamkov M (1837) Ultrafast carrier dynamics in Type II ZnSe/CdS/ZnSe nanobarbells. ACS Nano 2010:4

    Google Scholar 

  78. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    ADS  Google Scholar 

  79. Miller DAB, Chemla DS, Damen TC, Gossard AC, Wiegmann W, Wood TH, Burrus CA (1984) Band-edge electroabsorption in quantum well structures – the quantum-confined Stark effect. Phys Rev Lett 53:2173–2176

    ADS  Google Scholar 

  80. Kuol Y, Leel YK, Ge Y, Ren S, Roth JE, Kamins TI, Miller DA, Harris JS (2005) Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437:334

    Google Scholar 

  81. Reiss P (2007) ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New J Chem 31:1843–1852

    MathSciNet  Google Scholar 

  82. Hunsche S, Dekorsy T, Klimov V, Kurz H (1996) Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl Phys B 62:3–10

    ADS  Google Scholar 

  83. Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C, Kudryavtsev IA, Yaveza TV, Rodina AV, Efros AL (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B 10:100–106

    ADS  Google Scholar 

  84. Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M (1995) Observation of the dark excitons in CdSe quantum dots. Phys Rev Lett 75:3728–3731

    ADS  Google Scholar 

  85. Klimov V, Hunsche S, Kurz H (1994) Biexciton effects in femtosecond nonlinear transmission of semiconductor quantum dots. Phys Rev B 50:8110–8113

    ADS  Google Scholar 

  86. Klimov VI (2000) Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B 104:6112–6123

    Google Scholar 

  87. Norris D, Sacra A, Murray C, Bawendi M (1994) Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys ReV Lett 72:2612–2615

    ADS  Google Scholar 

  88. Many A, Goldstein Y, Grover NB (1965) Semiconductor surfaces. North Holland, Amsterdam

    Google Scholar 

  89. Nolte DD (1999) Semi-insulating semiconductor heterostructures: optoelectronic properties and applications. J Appl Phys 85:6259–6289

    ADS  Google Scholar 

  90. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    ADS  Google Scholar 

  91. Storm HF (1969) Solid-state power electronics in the USA. IEEE Trans Electron Dev ED 16:957

    Google Scholar 

  92. Jun Y, Choi J, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 45:3414–3439

    Google Scholar 

  93. Rajeshwar K, Tacconi N, Chenthamarakshan C (2001) Semiconductor-based composite materials: preparation, properties, and performance. Chem Mater 13:2765–2782

    Google Scholar 

  94. Cozzoli P, Manna L (2005) Tips on growing nanocrystals. Nature Mater 4:801–802

    ADS  Google Scholar 

  95. Yang J, Elim HI, Zhang Q, Lee JL, Ji W (2006) Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. J Am Chem Soc 128:11921

    Google Scholar 

  96. Dukovic G, Merkle MG, Nelson JH, Hughes SM, Alivisatos AP (2008) Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv Mater 20:4306–4311

    Google Scholar 

  97. Deka S, Falqui A, Bertoni G, Sangregorio C, Poneti G, Morello G, Giorgi M, Giannini C, Cingolani R, Manna L, Cozzoli PD (2009) Fluorescent asymmetrically cobalt-tipped CdSe@CdS Core@Shell nanorod heterostructures exhibiting room-temperature ferromagnetic behavior. J Am Chem Soc 131:12817–12828

    Google Scholar 

  98. Zanella M, Falqui A, Kudera S, Manna L, Casula MF, Parak WJ (2008) Growth of colloidal nanoparticles of group II–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals. J Mater Chem 18:4311–4317

    Google Scholar 

  99. Zhang JT, Tang Y, Lee K, Ouyang M (2010) Exciton-plasmon interactions in metal-semiconductor nanostructures. Science 327:1634–1638

    ADS  Google Scholar 

  100. Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI (2005) Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc 127:544–546

    Google Scholar 

  101. Carbone L, Kudera S, Giannini C, Ciccarella G, Cingolani R, Cozzoli PD, Manna L (2006) Selective reactions on the tips of colloidal semiconductor nanorods. J Mater Chem 16:3952

    Google Scholar 

  102. Saunders AE, Popov I, Banin U (2006) Growth of colloidal nanoparticles of the group II-VI and IV-VI semiconductors on the top of magnetic ion-platinum nanocrystals. J Phys Chem B 110:25421

    Google Scholar 

  103. Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U (2008) Selective gold growth on CdSe seeded CdS nanorods. Chem Mater 20:6900–6902

    Google Scholar 

  104. Carbone L, Jakab A, Khalavka Y, Sonnichsen C (2009) Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level. Nano Lett 9:3710–3714

    Google Scholar 

  105. Mokari T, Costi R, Sztrum CG, Rabani E, Banin U (2006) Formation of symmetric and asymmetric metal-semiconductor hybrid nanoparticles. Phys Stat Sol B 243:3952–3958

    ADS  Google Scholar 

  106. Khon E, Hewa-Kasakarage NN, Nemitz I, Acharya K, Zamkov M (2010) Tuning the morphology of Au/CdS nano-composites though temperature-controlled reduction of gold-oleate complexes. Chem Mater 22:5929

    Google Scholar 

  107. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49:4878–4897

    Google Scholar 

  108. Zhang JT, Tang Y, Lee K, Ouyang M (2010) Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 466:91–95

    ADS  Google Scholar 

  109. Lee J, Orazbayev A, Govorov AO, Kotov NA (2010) Solvent effect in dynamic superstructures from Au nanoparticles and CdTe nanowires: experimental observation and theoretical description. J Phys Chem C 114:1404–1410

    Google Scholar 

  110. Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, Lagemaat VD (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. J Appl Phys Lett 92:013504

    ADS  Google Scholar 

  111. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    ADS  Google Scholar 

  112. Jestl M, Maran I, Kock A, Beinstingl W, Gornik E (1989) Polarization-sensitive surface plasmon Schottky detectors. Opt Lett 14:719–721

    ADS  Google Scholar 

  113. Sheldon MT, Trudeau PE, Mokari T, Wang LW, Alivisatos AP (2009) Enhanced semiconductor nanocrystal conductance via solution grown contacts. Nano Lett 9:3676–3682

    Google Scholar 

  114. Maynadie J, Salant A, Falqui A, Respaud M, Shaviv E, Banin U, Soulantica K, Chaudret B (2009) Cobalt growth on the tips of CdSe nanorods. Angew Chem Int Ed 48:1814–1817

    Google Scholar 

  115. Drexhage KH, Wolf E (1974) Progress in optics. Amsterdam, The Netherlands, Vol. XII, p 163.

    Google Scholar 

  116. Achermann M (2010) Exciton-plasmon interactions in metal-semiconductor nanostructures. J Phys Chem Lett 1:2837–2843

    Google Scholar 

  117. Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG (2002) Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett 89:117401

    ADS  Google Scholar 

  118. Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95:17402

    ADS  Google Scholar 

  119. Bergman DJ, Stockman MI (2003) Phys Rev Lett 90:027402

    ADS  Google Scholar 

  120. Mertens H, Biteen JS, Atwater HA, Polman A (2006) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Nano Lett 6:2622–2625

    ADS  Google Scholar 

  121. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface plasmon enhanced light-emitters based on InGaN quantum wells. Nat Mater 3:601–605

    ADS  Google Scholar 

  122. Guo P-F, Wu S, Ren Q-J, Lu J, Chen Z, Xiao S-J, Zhu Y-YJ (2010) Phys Chem Lett 1:315–318

    Google Scholar 

  123. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys ChemB 109:1088–1093

    Google Scholar 

  124. Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Surface plasmon enhanced silicon solar cells. Appl Phys Lett 88:161102

    ADS  Google Scholar 

  125. Muskens OL, Giannini V, Sanchez-Gil JA, Rivas JG (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7:2871–2875

    ADS  Google Scholar 

  126. Wang Y, Yang T, Tuominen MT, Achermann M (2009) Radiative rate enhancements in hybrid metal-semiconductor nanostructures. Phys Rev Lett 102:163001

    ADS  Google Scholar 

  127. Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806

    ADS  Google Scholar 

  128. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    ADS  Google Scholar 

  129. Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA (2008) Lasing spaser. Nat Photonics 2:351–354

    ADS  Google Scholar 

  130. Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vuckovic J (2005) Efficient source of deterministically polarized single photons. Phys Rev Let 95:013904

    ADS  Google Scholar 

  131. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    ADS  Google Scholar 

  132. Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526

    ADS  Google Scholar 

  133. Lee J, Hernandez P, Lee J, Govorov AO, Kotov NA (2007) Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat Mater 6:291–295

    ADS  Google Scholar 

  134. Gupta JA, Knobel R, Samarth N, Awschalom DD (2001) Ultrafast manipulation of electron spin coherence. Science 292:2458–2461

    ADS  Google Scholar 

  135. Press D, Ladd TD, Zhang B, Yamamoto Y (2008) Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456:218–221

    ADS  Google Scholar 

  136. Berezovsky J, Mikkelsen MH, Stoltz NG, Coldren LA, Awschalom DD (2008) Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320:349–352

    ADS  Google Scholar 

  137. Gόmez DE, Vernon KC, Mulvaney P, Davis TJ (2010) Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. Nano Lett 10:274–278

    ADS  Google Scholar 

  138. Khon E, Mereshchenko A, Tarnovsky AN, Acharya K, Klinkova A, Hewa-Kasakarage NN, Nemitz I, Zamkov M (2011) Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett 11:1792

    ADS  Google Scholar 

  139. Costi R, Saunders AE, Banin E, Angew U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Chem Int Ed 49:4818–4897

    Google Scholar 

  140. Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis and hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641

    ADS  Google Scholar 

  141. Zhao N, Liu K, Greener J, Nie Z, Kumacheva E (2009) Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett 9:3077–3081

    ADS  Google Scholar 

  142. Scholes GD (2008) Insights into excitons confined to nanoscale systems: electron-hole interaction, binding energy and photodissociation. ACS Nano 2:523–537

    Google Scholar 

  143. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Google Scholar 

  144. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem 103:8410–8426

    Google Scholar 

  145. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Google Scholar 

  146. Boernstein L (1998) Numerical data and functional relationships in science and technology. Group III, Condensed Matter, SubVolume C; Martienssen W (ed) Springer, Verlag

    Google Scholar 

  147. Dinger A, Petillon S, Grün M, Hetterich M, Klingshirn C (1999) Conduction band offset of the CdS/ZnSe heterostructure. Semi Sci Tech 14:595–598

    ADS  Google Scholar 

  148. Hewa-Kasakarage NN, El-Khoury PZ, Tarnovsky AN, Kirsanova M, Nemitz I, Nemchinov A, Zamkov M (2010) Ultrafast carrier dynamics in type II ZnSe.CdS.ZnSe nano- barbells. ACS Nano 4:1837–1844

    Google Scholar 

  149. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  150. Ahmadi TS, Logunov SL, El-Sayed MA (1996) Picosecond dynamics of colloidal gold nanoparticles. J Phys Chem 100:8053–8056

    Google Scholar 

  151. Logunov SL, Ahmadi TS, El-Sayed MAJ (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. Phys Chem B 101:3713–3719

    Google Scholar 

  152. Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Shape control on PbSe nanocrystals using noble metal seed particles. Nano Lett 6:709

    ADS  Google Scholar 

  153. Pacholski C, Kornowski A, Weller H (2004) Nanomaterials: site-specific photodeposition of silver on ZnO nanorods. Angew Chem Int Ed 43:4774

    Google Scholar 

  154. Mokari T, Aharoni A, Popov I, Banin U (2006) Diffusion of gold into in as nanocrystals. Angew Chem Int Ed 45:8001

    Google Scholar 

  155. Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Control of the morphology and size of PbS nanowires using gold nanoparticles. Chem Mater 18:5965

    Google Scholar 

  156. Peng P, Milliron DJ, Hughes SM, Johnson JC, Alivisatos AP, Saykally RJ (2005) Femtosecond spectroscopy of carrier relaxation dynamics in a type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett 5:1809–1813

    ADS  Google Scholar 

  157. Dooley CJ, Dimitrov SD, Fiebig T (2008) Ultrafast electron transfer dynamics in CdSe.CdTe donor-acceptor nanorods. J Phys Chem C 112:12074–12076

    Google Scholar 

  158. Lupo MG, Sala FD, Carbone L, Zavelani-Rossi M, Fiore A, Lüer L, Polli D, Cingolani R, Manna L, Lanzani G (2008) Ultrafast electron- hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett 8:4582–4587

    ADS  Google Scholar 

  159. Hewa-Kasakarage NN, Gurusinghe PG, Zamkov M (2009) Blue-shifted emission in CdTe/ZnSe heterostructured nanocrystals blue-shifted emission in CdTe/ZnSe heterostructured nanocrystals. J Phys Chem C 113:4362–4368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Connor, T., Zamkov, M. (2013). Optical Properties of Nanocomposites. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics