Skip to main content

Dynamical Systems Method for Solving First Kind of Operator Equations with Disturbance Item

  • Conference paper
Information Computing and Applications (ICICA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 243))

Included in the following conference series:

  • 2220 Accesses

Abstract

In this paper, the dynamical systems method (DSM) for solving the first kind of operator equations with noise in the right-hand data is studied. The convergence of the discrete form of DSM is proved, and then the convergence rate of the approximate solution is obtained under certain prior assumption. The experimental results of first kind of Fredholm integral equations show that DSM is more accurate and faster than Tikhonov regularization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  2. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)

    MATH  Google Scholar 

  3. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence Rates for Tikhonov Regularization of Nonlinear Ill-posed Problems. Inverse Problems 5, 523–540 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Airapetyan, R.G., Ramm, A.G.: Dynamical Systems and Discrete Methods for Solving Nonlinear Ill-posed Problem. Applied Mathematics Reviews, 491–536 (2000)

    Google Scholar 

  5. Ramm, A.G.: Linear Ill-posed Problems and Dynamical Systems. J. Math. Anal. Appl. 258, 448–456 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ramm, A.G.: Dynamical Systems Method for Solving Operator Equations. Commun. Nonlinear Sci. Numer. Simul. 9, 383–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoang, N.S., Ramm, A.G.: Dynamical Systems Gradient Method for Solving Ill-conditioned Linear Algebraic Systems. Acta Applicandae Mathematicae 111, 189–204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoang, N.S., Ramm, A.G.: Dynamical Systems Gradient Method for Solving Nonlinear Equations with Monotone Operators. Acta Applicandae Mathematicae 106, 473–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoang, N.S.: Dynamical Systems Method of Gradient Type for Solving Nonlinear Equations with Monotone Operators. BIT Numerical Mathematics 50, 751–780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng-Shun, J., Xian-Chao, W. (2011). Dynamical Systems Method for Solving First Kind of Operator Equations with Disturbance Item. In: Liu, C., Chang, J., Yang, A. (eds) Information Computing and Applications. ICICA 2011. Communications in Computer and Information Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27503-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27503-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27502-9

  • Online ISBN: 978-3-642-27503-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics