Skip to main content

Application of Acoustic Techniques for Characterization of Biological Samples

  • Chapter
  • First Online:
Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 1800 Accesses

Abstract

The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1–10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Autoprobe M5 from Park Scientific Instruments, 1996.

References

  1. K.D. Costa, Single-cell elastography: probing for disease with the atomic force microscope. J. Dis. Markers (ed. by N. Simpson) 19, 139–154 (2004)

    Google Scholar 

  2. B.S. Elkin et al., Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation (Synapsis). J. Neurot. 24(5), 812–822 (2007)

    Google Scholar 

  3. S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold, Measurements of elastic properties of ultra-thin diamond-like carbon coating using atomic force microscopy. Thin Solid Films 72, 75–84 (2001)

    Article  Google Scholar 

  4. M.G. Heaton, C.B. Prater, P. Maivald, Force Modulation Imaging: Application Note. Veeco Metrology Group, Digital Instruments, 2001

    Google Scholar 

  5. E. Kester, U. Rabe, L. Presmanes, Ph Tailhades, W. Arnold, Measurement of Yong’s modulus of nanocrystalline ferrites with spinel structures by atomic force acoustic microscopy. J. Phys. Chem. Solid. 61, 1275–1284 (2000)

    Article  ADS  Google Scholar 

  6. M. Kopycinska-Mueller, R.H. Geiss, J. Mueller, D.C. Hurley, Elastic property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16, 7033–709 (2005)

    Article  Google Scholar 

  7. O.V. Kolosov, M.R. Castell, C.D. Marsh, G. Andrew, D. Briggs, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 8, 1046–1049 (1998)

    Article  ADS  Google Scholar 

  8. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology. 2, 103–106 (1991)

    Article  ADS  Google Scholar 

  9. K. Yamanaka, H. Ogiso, O. Kolosov, Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope. Japanese J. Appl. Phys. 33, 3197–3203 (1994)

    Article  ADS  Google Scholar 

  10. E.K. Dimitiadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick, Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002)

    Article  Google Scholar 

  11. G. Shekhawat, S. Avasthy, A. Srivastava, S.-H. Tark, V. Dravid, Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE Trnas. Nanaotechnol. 9(6), 671–674 (2010)

    Google Scholar 

  12. R. Szoszkiewicz, A. Kulik, G. Gremaud, M. Lekka, Probing local water contents of in vitro protein films by ultrasonic force microscopy. Appl. Phys. Lett. 86, 123901 (2005)

    Article  ADS  Google Scholar 

  13. J. Cuberes, Mechanical diode mode ultrasonic friction force microscopy. J. Phys. Conf. Series 100, 052014 (2008)

    Google Scholar 

  14. A. Ebert, B.R. Tittmann, J. Du, W. Scheuchenzuber, Technique for rapid in vitro single-cell elastography. J. Ultrasound Med. Biol. 32(11), 1687–1702 (2006)

    Article  Google Scholar 

  15. C. Miyasaka, B.R. Tittmann, Ultrasonic atomic force microscopy on spray dried ceramic powder. In: Acoustic Imaging, vol. 27, ed. by W. Arnold, S. Hirsekorn (Kluver Academic, Dordrecht, 2004), pp. 715–720

    Google Scholar 

  16. R. Howland, L. Benatar, A Practical Guide to Scanning Probe Microscopy, vol. 74 (Park Scientific Instruments, Sunnyvale, 1996)

    Google Scholar 

  17. J.H. Kinney, M. Balooch, S.J. Marshall, G.W. Marshall, Atomic force microscope measurements of the hardness and elasticity of peritublular and intertubular human dentin. J. Biomech. Eng. 118, 133–135 (1996)

    Article  Google Scholar 

  18. M. Lantz, Y.Z. Liu, X.D. Cui, H. Tokumoto, S.M. Lindsay, Dynamic force microscopy fluids. Surf. Interface Anal. 27(5–6), 354–360 (1999)

    Google Scholar 

  19. R.M. Overney, E. Meyer, J. Frommer, H.-J. Guentherrodt, M. Fujihara, H. Takano, Y. Gotch, Force microscopy study of friction and elastic compliance of phase-separated organic thin films. Langmuir 10, 1282–1286 (1994)

    Article  Google Scholar 

  20. D. Stamenovic, D.E. Ingber, Models of cytoskeletal mechanics of adherent cells. Biomech. Model Mechanobiol. 1(1), 95–108 (2002)

    Article  Google Scholar 

  21. A. Stevens, J.L. Lowe, Human Histology (Mosby, London, 1997)

    Google Scholar 

  22. K.N. Wadu-Mesthrige, A.A. Amro, A.S. Garno, A.A. Amro, S. Cruchon-Dupeyrat, G.Y. Liu, Contact resonance imaging—a simple approach to improve the resolution of AFM for biological and polymeric materials. Appl. Surf. Sci. 175–176, 391–398 (2001)

    Article  Google Scholar 

  23. M. Nagayama, H. Haga, Y. Tanaka, Y. Hirai, K. Kabuto, K. Kawabata, Improvement of force modulation mode with scanning probe microscopy for imaging viscoelasticity of living cells. Jpn. J. Appl. Phys. 44, 952–4955 (2002)

    Google Scholar 

  24. E. Al-Hassan, W.F. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.A. Schoeneberger, J.H. Hoh, Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998)

    Article  ADS  Google Scholar 

  25. J.H. Darnell, D. Lodish, D. Baltimore, Molecular Cell Biology, 2nd edn. (Scientific American Books, New York, 1990)

    Google Scholar 

  26. M. Radmacher, C.M. Kacher, J.P. Cleveland, P.K. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996)

    Article  Google Scholar 

  27. R.I. Freshney, Culture of Animal Cells: Manual of Basic Technologies (Wiley, New York, 2000)

    Google Scholar 

  28. R. Nowakowski, P. Lucklam, Imaging the surface details of red blood cells with atomic force microscopy. Surf. Interface Anal. 33, 118–121 (2002)

    Article  Google Scholar 

  29. D.E. Ingber, I. Tensegrity, Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003a)

    Article  Google Scholar 

  30. D.E. Ingber, Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003b)

    Article  Google Scholar 

  31. A. Vinckier, G. Semenza, Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430, 12–16 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

B.R.T. was partially supported as part of the Center for Lignocellulose Structure and Formation (CLSF) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard R. Tittmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tittmann, B.R., Ebert, A. (2013). Application of Acoustic Techniques for Characterization of Biological Samples. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_17

Download citation

Publish with us

Policies and ethics