Skip to main content

Hammerhead Ribozymes Against Virus and Viroid RNAs

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The hammerhead ribozyme, a small catalytic motif that promotes self-cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically in trans other RNAs in the presence of Mg2+. To be really effective, hammerheads need to operate at the low concentration of Mg2+ existing in vivo. Evidence has been gathered along the last years showing that tertiary stabilizing motifs (TSMs), particularly interactions between peripheral loops, are critical for the catalytic activity of hammerheads at physiological levels of Mg2+. These TSMs, in two alternative formats, have been incorporated into a new generation of more efficient trans-cleaving hammerheads, some of which are active in vitro and in planta when targeted against the highly structured RNA of a viroid (a small plant pathogen). This strategy has potential to confer protection against other RNA replicons, like RNA viruses infecting plants and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arber W, Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38:467–500

    Article  PubMed  CAS  Google Scholar 

  • Atkins D, Young M, Uzzell S et al (1995) The expression of antisense and ribozyme genes targeting citrus exocortis viroid in transgenic plants. J Gen Virol 76:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Branch AD, Robertson HD (1984) A replication cycle for viroids and other small infectious RNAs. Science 223:450–454

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Greathouse ST (2005) Low-magnesium, trans-cleavage activity by type III, tertiary stabilized hammerhead ribozymes with stem I discontinuities. BMC Biochem 6:14

    Article  PubMed  Google Scholar 

  • Campbell TB, McDonald CK, Hagen M (1997) The effect of structure in a long target RNA on ribozyme cleavage efficiency. Nucleic Acids Res 25:4985–4993

    Article  PubMed  CAS  Google Scholar 

  • Canny M, Jucker F, Kellogg E et al (2004) Fast cleavage kinetics of a natural hammerhead ribozyme. J Am Chem Soc 126:10848–10849

    Article  PubMed  CAS  Google Scholar 

  • Carbonell A, De la Peña M, Flores R et al (2006) Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of AUC in most natural hammerheads. Nucleic Acids Res 34:5613–5622

    Article  PubMed  CAS  Google Scholar 

  • Carbonell A, Flores R, Gago S (2011) Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA. Nucleic Acids Res 39:2432–2444

    Article  PubMed  CAS  Google Scholar 

  • Castanotto D, Li JR, Michienzi A et al (2002) Intracellular ribozyme applications. Biochem Soc Trans 30:1140–1145

    Article  PubMed  CAS  Google Scholar 

  • Chi Y, Martick M, Lares M et al (2008) Capturing hammerhead ribozyme structures in action by modulating general base catalysis. PLoS Biol 6:2060–2068

    CAS  Google Scholar 

  • Daròs JA, Flores R (2002) A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J 21:749–759

    Article  PubMed  Google Scholar 

  • De la Peña M, Flores R (2001) An extra nucleotide in the consensus catalytic core of a viroid hammerhead ribozyme: implications for the design of more efficient ribozymes. J Biol Chem 276:34586–34593

    Article  PubMed  Google Scholar 

  • De la Peña M, Garcia-Robles I (2010) Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16:1943–1950

    Article  PubMed  Google Scholar 

  • De la Peña M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–5570

    Article  PubMed  Google Scholar 

  • Diener TO (1971) Potato spindle tuber virus. IV. Replicating, low molecular weight RNA. Virology 45:411–428

    Article  PubMed  CAS  Google Scholar 

  • Diener TO (2003) Discovering viroids—a personal perspective. Nat Rev Microbiol 1:75–80

    Article  PubMed  CAS  Google Scholar 

  • Ding B (2009) The biology of viroid-host interactions. Annu Rev Phytopathol 47:105–131

    Article  PubMed  CAS  Google Scholar 

  • Dufour D, De la Peña M, Gago S et al (2009) Structure-function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop-loop interaction motif conserved in most natural hammerheads. Nucleic Acids Res 37:368–381

    Article  PubMed  CAS  Google Scholar 

  • Fadda Z, Daròs JA, Fagoaga C et al (2003) Eggplant latent viroid, the candidate type species for a new genus within the family avsunviroidae. J Virol 77:6528–6532

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Flores R, Semancik JS (1982) Properties of a cell-free system for synthesis of citrus exocortis viroid. Proc Natl Acad Sci USA 79:6285–6288

    Article  PubMed  CAS  Google Scholar 

  • Flores R, Hernández C, De la Peña M et al (2001) Hammerhead ribozyme structure and function in plant RNA replication. Meth Enzymol 341:540–552

    Article  PubMed  CAS  Google Scholar 

  • Flores R, Hernández C, Martínez de Alba AE et al (2005) Viroids and viroid-host interactions. Annu Rev Phytopathol 43:117–139

    Article  PubMed  CAS  Google Scholar 

  • Flores R, Grubb D, Elleuch A et al (2011) Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol 8:200–206

    Article  PubMed  CAS  Google Scholar 

  • Forster AC, Symons RH (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49:211–220

    Article  PubMed  CAS  Google Scholar 

  • Gesner EM, Schellenberg MJ, Garside EL et al (2011) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18:688–692

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Domdey H, Lossow C et al (1978) Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 273:203–208

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 334:585–591

    Article  PubMed  CAS  Google Scholar 

  • Hernández C, Flores R (1992) Plus and minus RNAs of peach latent mosaic viroid self cleave in vitro via hammerhead structures. Proc Natl Acad Sci USA 89:3711–3715

    Article  PubMed  Google Scholar 

  • Homann M, Tzortzakaki S, Rittner K et al (1993) Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1. Nucleic Acids Res 21:2809–2814

    Article  PubMed  CAS  Google Scholar 

  • Hormes R, Sczakiel G (2002) The size of hammerhead ribozymes is related to cleavage kinetics: the role of substrate length. Biochimie 84:897–903

    Article  PubMed  CAS  Google Scholar 

  • Hutchins CJ, Rathjen PD, Forster AC et al (1986) Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14:3627–3640

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Taira K (2002) Identification of genes by hybrid ribozymes that couple cleavage activity with the unwinding activity of an endogenous RNA helicase. EMBO Rep 3:443–450

    Article  PubMed  CAS  Google Scholar 

  • Khvorova A, Lescoute A, Westhof E et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  PubMed  CAS  Google Scholar 

  • Kore A, Vaish NK, Kutzke U et al (1998) Sequence specificity of the hammerhead ribozyme revisited; the NHH rule. Nucleic Acids Res 26:4116–4120

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Tabler M, Tsagris M (2000) Episomal expression of a hammerhead ribozyme directed against plum pox virus. Virus Res 68:15–23

    Article  PubMed  CAS  Google Scholar 

  • Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:1–12

    Article  Google Scholar 

  • McCall MJ, Hendry P, Jennings PA (1992) Minimal sequence requirements for ribozyme activity. Proc Natl Acad Sci USA 89:5710–5714

    Article  PubMed  CAS  Google Scholar 

  • Mühlbach HP, Sänger HL (1979) Viroid replication is inhibited by α-amanitin. Nature 278:185–188

    Article  PubMed  Google Scholar 

  • Navarro B, Flores R (1997) Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci USA 14:11262–11267

    Article  Google Scholar 

  • Navarro JA, Vera A, Flores R (2000) A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268:218–225

    Article  PubMed  CAS  Google Scholar 

  • Penedo J, Wilson T, Jayasena S et al (2004) Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10:880–888

    Article  PubMed  CAS  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    Article  PubMed  CAS  Google Scholar 

  • Prody GA, Bakos JT, Buzayan JM et al (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580

    Article  PubMed  CAS  Google Scholar 

  • Rodio ME, Delgado S, De Stradis A et al (2007) A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell 19:3610–3616

    Article  PubMed  CAS  Google Scholar 

  • Rueda D, Wick K, McDowell SE et al (2003) Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42:9924–9936

    Article  PubMed  CAS  Google Scholar 

  • Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29:10695–10702

    Article  PubMed  CAS  Google Scholar 

  • Saksmerprome V, Roychowdhury-Saha M, Jayasena S et al (2004) Artificial tertiary motifs stabilize trans-cleaving hammerhead ribozymes under conditions of submillimolar divalent ions and high temperatures. RNA 10:1916–1924

    Article  PubMed  CAS  Google Scholar 

  • Samarsky DA, Ferbeyre G, Bertrand E et al (1999) A small nucleolar RNA:ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. Proc Natl Acad Sci USA 96:6609–6614

    Article  PubMed  CAS  Google Scholar 

  • Schindler IM, Mühlbach HP (1992) Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Sci 84:221–229

    Article  CAS  Google Scholar 

  • Scott WG, Finch JT, Klug A (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Cech TR (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262:1566–1569

    Article  PubMed  CAS  Google Scholar 

  • Tabler M, Tsagris M (2004) Viroids: petite RNA pathogens with distinguished talents. Trends Plant Sci 9:339–348

    Article  PubMed  CAS  Google Scholar 

  • Tabler M, Homann M, Tzortzakaki S et al (1994) A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design. Nucleic Acids Res 22:3958–3965

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbeck OC (1987) A small catalytic oligonucleotide. Nature 328:596–600

    Article  PubMed  CAS  Google Scholar 

  • Weinberg MS, Rossi JJ (2005) Comparative single-turnover kinetic analyses of trans-cleaving hammerhead ribozymes with naturally derived non-conserved sequence motifs. FEBS Lett 579:1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Yie Y, Zhu F et al (1997) Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic potatoes. Proc Natl Acad Sci USA 94:4861–4865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research is currently being supported by grants BFU2008-03154 and BFU2011-28443 from the Ministerio de Ciencia e Innovación of Spain and by the Generalitat Valenciana (ACOMP/2010/278).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricardo Flores or Selma Gago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbonell, A., Flores, R., Gago, S. (2012). Hammerhead Ribozymes Against Virus and Viroid RNAs. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_16

Download citation

Publish with us

Policies and ethics