Skip to main content

Spatial Alignment

  • Chapter
  • First Online:
Data Fusion: Concepts and Ideas
  • 3474 Accesses

Introduction

The subject of this chapter is spatial alignment. This is the conversion of local spatial positions to a common coordinate system and forms the first stage in the formation of a common representational format. To keep our discussion focused we shall limit ourselves to two-dimensional (x,y) image sensors. In this case the process of spatial alignment is more commonly referred to as image registration.

In many multi-sensor data fusion applications spatial alignment is the primary fusion algorithm. In Table 5.1 we list some of these applications together with the classification of the type of fusion algorithm involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, R.J., Lovell, B.C.: Color optical flow. In: Proc. Workshop Digital Image Comput., pp. 135–139 (2003)

    Google Scholar 

  2. Behloul, F., Lelieveldt, B.P.E., Boudraa, A., Janier, M., Revel, D., Reiber, J.H.C.: Neuro-fuzzy systems for computer-aided myocardial viability assessment. IEEE Trans. Med. Imag. 20, 1302–1313 (2001)

    Article  Google Scholar 

  3. Botev, Z.I., Kroese, D.P.: The generalized cross-entropy method with applications to probability density estimation (2006)

    Google Scholar 

  4. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina. IEEE Trans. Patt. Anal. Mach. Intell. 24, 412–419 (2002)

    Article  Google Scholar 

  5. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Trans. Patt. Anal. Mach. Intell. 24, 347–364 (2002)

    Article  Google Scholar 

  6. Chen, H.-M., Arora, M.K., Varshney, P.K.: Mutual information based image registration for remote sensing data. Int. J. Remote Sens. 24, 3701–3706 (2003)

    Article  Google Scholar 

  7. Darbellay, G.A.: An estimator for the mutual information based on a criterion for independence. Comp. Stat. Data Anal. 32, 1–17 (1999)

    Article  MathSciNet  Google Scholar 

  8. Darbellay, G.A., Vajda, I.: Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inform. Theory 45, 1315–1321 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90, 1151–1163 (2002)

    Article  Google Scholar 

  10. Farsiu, S.: A fast and robust framework for image fusion and enhancement. PhD thesis, University of California (2005)

    Google Scholar 

  11. Fleet, D.J., Weiss, Y.: Optical flow estimation. In: Paragios, et al. (eds.) Handbook of Mathematical models in Computer Vision. Springer, Heidelberg (2006)

    Google Scholar 

  12. Glasbey, C.A., Mardia, K.V.: A review of image warping methods. App. Stat. 25, 155–171 (1998)

    Article  MATH  Google Scholar 

  13. Govindu, V.M.: Revisiting the Brightness Constraint: Probabilistic Formulation and Algorithms. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 177–188. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Hseih, C.-K., Lai, S.-H., Chen, Y.-C.: An optical flow-based approach to robust face recognition under expression variations. IEEE Trans. Im. Proc. 19, 233–240 (2010)

    Article  Google Scholar 

  15. Jain, A., Ross, A.: Fingerprint mosaicking. In: Proc. IEEE Int. Conf. Acquis. Speech Sig. Proc., ICASSP (2002)

    Google Scholar 

  16. Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. Am. Stat. Assoc. 91, 401–407 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knuth, K.H.: Optimal data-based binning for histograms. arXiv:physics/0605197v1 (2006)

    Google Scholar 

  18. Kybic, J.: Bootstrap resampling form image registration uncertainty estimation without ground truth. IEEE Trans. Im. Proc. 19, 64–73 (2010)

    Article  MathSciNet  Google Scholar 

  19. Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imag. 18, 1049–1075 (1999)

    Article  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale invariant key-points. Int. J. Comp. Vis. 60, 91–100 (2004)

    Article  Google Scholar 

  21. Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proc. IEEE 91, 1699–1722 (2003)

    Article  Google Scholar 

  22. Menon, D., Andriani, S., Calvagno, G.: Demosaicing with directional filtering and a posteriori decision. IEEE Trans. Imag. Process. 16, 132–141 (2007)

    Article  MathSciNet  Google Scholar 

  23. Mitchell, H.B.: Image Fusion: Theories, Techniques and Applications. Springer, Heidelberg (2010)

    Google Scholar 

  24. Perperidis, D.: Spatio-temporal registration and modeling of the heart using of cardiovascular MR imaging. PhD thesis, University of London (2005)

    Google Scholar 

  25. Perperidis, D., Mohiaddin, R., Rueckert, D.: Spatio-temporal free-form registration of cardiac MR image sequences. Med. Imag. Anal. 9, 441–456 (2005)

    Article  Google Scholar 

  26. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual information based registration of medical images: a survey. IEEE Trans. Med. Imag. 22, 986–1004 (2003)

    Article  Google Scholar 

  27. Ramachandran, M., Zhou, S.K., Jhalani, D., Chellappa, R.: A method for converting a similing face to a neutral face with applications to face recognition. In: Proc. ICASSP, pp. 18–23 (2005)

    Google Scholar 

  28. Reichenbach, S.E., Geng, F.: Two-dimensional cubic convolution. IEEE Trans. Image. Process. 12, 857–865 (2003)

    Article  MathSciNet  Google Scholar 

  29. Ross, A., Dass, S., Jain, A.: A deformable model for fingerprint matching. Patt. Recogn. 38, 95–103 (2003)

    Article  Google Scholar 

  30. Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer Jr., C.R.: Image Similarity Using Mutual Information of Regions. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Scott, D.W.: On optimal and data-based histograms. Biometrika 66, 605–610

    Google Scholar 

  32. Scott, D.W.: Multivariate Density Estimation. Wiley (1992)

    Google Scholar 

  33. Senaratne, R., Jap, B., Lal, S., Halgamuge, S., Fischer, P.: Comparing two video-based techniques for driver fatigue detection: classification versus optical flow approach. Mach. Vis. App. 22, 597–618 (2011)

    Article  Google Scholar 

  34. Silverman, B.: Density estimation for statistical data analysis. Chapman-Hall (1986)

    Google Scholar 

  35. Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J.: The mutual information: detecting and evaluating dependencies between variables. Bioinform. 18 (Supplement 2), S231–S240 (2002)

    Article  Google Scholar 

  36. Thevenaz, P., Blu, T., Unser, M.: Interpolation Revisited. IEEE Trans. Med. Imag. 19, 739–758 (2000)

    Article  Google Scholar 

  37. Thevenaz, P., Unser, M.: A pyramid approach to sub-pixel image fusion based on mutual information. In: Proc. IEEE Int. Conf. Image Proc., Switzerland, vol. 1, pp. 265–268 (1996)

    Google Scholar 

  38. Tomazevie, D., Likar, B., Pernus, F.: Multi-feature mutual information. In: Proc. SPIE, vol. 5370, pp. 143–154 (2004)

    Google Scholar 

  39. Zagorchev, L., Goshtasby, A.: A comparative study of transformation functions for nonrigid image registration. IEEE Trans. Imag. Proc. 15, 529–538 (2006)

    Article  Google Scholar 

  40. Zitova, B., Flusser, J.: Image registration methods: a survey. Imag. Vis. Comp. 21, 977–1000 (2003)

    Article  Google Scholar 

  41. Zuliani, M.: Computational methods for automatic image registration. PhD thesis, University of California (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Mitchell .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitchell, H.B. (2012). Spatial Alignment. In: Data Fusion: Concepts and Ideas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27222-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27222-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27221-9

  • Online ISBN: 978-3-642-27222-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics