Skip to main content

Sequential Bayesian Inference

  • Chapter
  • First Online:
Data Fusion: Concepts and Ideas
  • 3460 Accesses

Introduction

The subject of this chapter is sequential Bayesian inference in which we consider the Bayesian estimation of a dynamic system which is changing in time. Let θ k denote the state of the system, i. e. a vector which contains all relevant information required to describe the system, at some (discrete) time k. Then the goal of sequential Bayesian inference is to estimate the a posteriori probability density function (pdf) p(θ k |y 1:l , I), by fusing together a sequence of sensor measurements y1:l = (y1, y2, ... ,y l ). In this chapter we shall only consider the calculation of pdf p(θ k |y 1:l , I) for k = l which is known as (sequential) Bayesian filtering or filtering for short.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50, 174–188 (2002)

    Article  Google Scholar 

  2. Bar-Shalom, Y., Campo, L.: The effect of the common process noise on the two sensor fused track covariance. IEEE Trans. Aero. Elect. Sys. 22, 803–805 (1986)

    Article  Google Scholar 

  3. Bar-Shalom, Y., Li, X.: Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing, Storrs (1995)

    Google Scholar 

  4. Blackman, S.S., Popoli, R.F.: Design and analysis of modern tracking Systems. Artech House (1999)

    Google Scholar 

  5. Brown, R.G., Hwang, P.Y.C.: Introduction to random signal analysis and Kalman filtering. John Wiley and Sons (1997)

    Google Scholar 

  6. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Adaptive Systems Laboratory, Communications Research Laboratory. McMaster University,Canada (2003)

    Google Scholar 

  7. Chang, K., Saha, R., Bar-Shalom, Y.: On optimal track-to-track fusion. IEEE Trans. Aero. Elect. Sys. 33, 1271–1276 (1997)

    Article  Google Scholar 

  8. Cipra, T., Romera, R.: Kalman filter with outliers and missing observations. Test 6, 379–395 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox, I.J.: A review of statistical data association techniques for motion correspondence. Int. J. Comp. Vis. 10, 53–66 (1993)

    Article  Google Scholar 

  10. Duncan, S., Singh, S.: Approaches to multisensor data fusion in target tracking: a survey. IEEE Trans. Know Data Engng. 18, 1696–1710 (2006)

    Article  Google Scholar 

  11. Eshel, R., Moses, Y.: Tracking people in a crowded scene. Int. J. Comp. Vis. 88, 129–143 (2011)

    Article  Google Scholar 

  12. Flament, M., Fleury, G., Davoust, M.-E.: Particle filter and Gaussian-mixture filter efficiency evaluation for terrain-aided navigation. In: 12th Euro. Sig. Proc. Conf. EUSIPCO 2004, Vienna, Austria (2004)

    Google Scholar 

  13. Galanis, G., Anadranistakis, M.: A one-dimensional Kalman filter vfor the correction of near surface temperature forecasts. Meteorological Appl. 9, 437–441 (2002)

    Article  Google Scholar 

  14. Gao, J.B., Harris, C.J.: Some remarks on Kalman filters for the multisensor fusion. Inf. Fusion 3, 191–201 (2002)

    Article  Google Scholar 

  15. Huber, P.J.: Robust Statistics. John Wiley and Sons (1981)

    Google Scholar 

  16. Julier, S., Uhlmann, J.: General decentralized data fusion with covariance intersection (CI). In: Hall, D., Llians, J. (eds.) Handbook of Multidimensional Data Fusion, ch. 12. CRC Press (2001)

    Google Scholar 

  17. Julier, S.J., Uhlmann, J.K., Nicholson, D.N.: A method for dealing with assignment ambiguity. In: Proc. 2004 Am. Control Conf., Boston, Mass (2004)

    Google Scholar 

  18. Li, X.R., Jilkov, V.P.: A survey of maneuvering target tracking. Part I: Dynamic models. IIEEE Trans. Aero. Elec. Syst. 39, 1333–1363 (2003)

    Google Scholar 

  19. Li, X., Zhi, X.: PSNR: a refined strongest neighbor filter for tracking in clutter. In: Proc. 35th IEEE Conf. Dec. Control. (1996)

    Google Scholar 

  20. Lian, G., Lai, J., Zheng, W.-S.: Spatial-temporal consistent labeling of tracked pedestrians across non-overlapping camera views. Patt. Recogn. 44, 1121–1136 (2011)

    Article  MATH  Google Scholar 

  21. Maskell, S.: Sequentially structured Bayesian solutions. PhD thesis. Cambridge University (2004)

    Google Scholar 

  22. Manfredi, V., Mahadevan, S., Kurose, J.: Switching Kalman filters for prediction and tracking in an adaptive meteorological sensing network. In: 2nd Annual IEEE Commun. Soc. Conf. Sensor and Ad Hoc Commun. and Networks, SECON 2005, Santa Clara, California, USA (2005)

    Google Scholar 

  23. Mardia, K.V., Goodall, C., Redfern, E.J., Alonso, F.J.: The Kriged Kalman filter. Test 7, 217–284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meinhold, R.J., Singpurwalla, N.D.: Understanding the Kalman filter. Am. Stat. 37, 123–127 (1983)

    Article  Google Scholar 

  25. Murphy, K.P.: Switching Kalman Filters. Unpublished Rept. Available from homepage of K. P. Murphy (1998)

    Google Scholar 

  26. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning, PhD thesis. University of California, Berkeley, USA (2002)

    Google Scholar 

  27. van der Merwe, R.: Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. PhD thesis. Oregon Health and Science University (2004)

    Google Scholar 

  28. Moore, J.R., Blair, W.D.: Practical aspects of multisensor tracking. In: Bar-Shalom, Y., Blair, W.D. (eds.) Multitarget-Multisensor Tracking: Applications and Advances, vol. III, pp. 1–78. Artech House, USA (2000)

    Google Scholar 

  29. Moore, M., Wang, J.: An extended dynamic model for kinematic positioning. J. Navig. 56, 79–88 (2003)

    Article  Google Scholar 

  30. Pulford, G.W.: Taxonomy of multiple target tracking methods. IEEE Proc-Radar, Sonar, Navig. 152, 291–304 (2005)

    Article  Google Scholar 

  31. Shin, V., Lee, Y., Choi, T.-S.: Generalized Millman’s formula and its application for estimation problems. Sig. Proc. 86, 257–266 (2006)

    Article  MATH  Google Scholar 

  32. Wang, C., Kim, J.-H., Byun, K.-Y., Ni, J., Ko, S.-J.: Robust digital image stabilization using the Kalman filter. IEEE Trans. Consum. Elec. 55, 6–14 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Mitchell .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitchell, H.B. (2012). Sequential Bayesian Inference. In: Data Fusion: Concepts and Ideas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27222-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27222-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27221-9

  • Online ISBN: 978-3-642-27222-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics