Skip to main content

Fast Frontier Detection for Robot Exploration

  • Conference paper
Advanced Agent Technology (AAMAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7068))

Included in the following conference series:

Abstract

Frontier-based exploration is the most common approach to exploration, a fundamental problem in robotics. In frontier-based exploration, robots explore by repeatedly computing (and moving towards) frontiers, the segments which separate the known regions from those unknown. However, most frontier detection algorithms process the entire map data. This can be a time consuming process which slows down the exploration. In this paper, we present two novel frontier detection algorithms: WFD, a graph search based algorithm and FFD, which is based on processing only the new laser readings data. In contrast to state-of-the-art methods, both algorithms do not process the entire map data. We implemented both algorithms and showed that both are faster than a state-of-the-art frontier detector implementation (by several orders of magnitude).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostolopoulos, D., Pedersen, L., Shamah, B., Shillcutt, K., Wagner, M., Whittaker, W.: Robotic antarctic meteorite search: Outcomes. In: IEEE International Conference on Robotics and Automation, pp. 4174–4179 (2001)

    Google Scholar 

  2. Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proceedings of the International Conference on Intelligent Robots and Systems, pp. 1957–1962 (2003)

    Google Scholar 

  3. Bouraqadi, N., Doniec, A., de Douai, E.M.: Flocking-Based Multi-Robot Exploration. In: National Conference on Control Architectures of Robots (2009)

    Google Scholar 

  4. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (2010)

    Article  Google Scholar 

  5. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 476–481 (2000)

    Google Scholar 

  6. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21(3), 376–378 (2005)

    Article  Google Scholar 

  7. Calisi, D., Farinelli, A., Iocchi, L., Nardi, D.: Multi-objective exploration and search for autonomous rescue robots: Research articles. J. Field Robot. 24, 763–777 (2007)

    Article  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2001)

    Google Scholar 

  9. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2443–2448 (2005)

    Google Scholar 

  10. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics 23, 34–46 (2007)

    Article  Google Scholar 

  11. Hougen, D.F., Benjaafar, S., Bonney, J., Budenske, J., Dvorak, M., Gini, M.L., French, H., Krantz, D.G., Li, P.Y., Malver, F., Nelson, B.J., Papanikolopoulos, N., Rybski, P.E., Stoeter, S., Voyles, R.M., Yesin, K.B.: A miniature robotic system for reconnaissance and surveillance. In: ICRA, pp. 501–507 (2000)

    Google Scholar 

  12. Howard, A., Roy, N.: The robotics data set repository, RADISH (2003), http://radish.sourceforge.net/

  13. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shimada, S.: Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 739–746. IEEE Computer Society (1999)

    Google Scholar 

  14. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach to multi-robot mapping and exploration. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3232–3238 (2003)

    Google Scholar 

  15. Lau, H.: NSW, A.: Behavioural approach for multi-robot exploration. In: Australasian Conference on Robotics and Automation (ACRA), Brisbane (December 2003)

    Google Scholar 

  16. Sawhney, R., Krishna, K.M., Srinathan, K.: On fast exploration in 2D and 3D terrains with multiple robots. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 73–80 (2009)

    Google Scholar 

  17. Stachniss, C.: Exploration and Mapping with Mobile Robots. Ph.D. thesis, University of Freiburg, Department of Computer Science (2006)

    Google Scholar 

  18. Visser, A.: personal communication. Email (January 4, 2011)

    Google Scholar 

  19. Visser, A., Slamet, B.A.: Including communication success in the estimation of information gain for multi-robot exploration. In: Proceedings of the 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2008), pp. 680–687. IEEE Publishing (April 2008)

    Google Scholar 

  20. Wurm, K.M.: Personal communication. Email (January 20, 2011)

    Google Scholar 

  21. Wurm, K., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration using a segmentation of the environment. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France (September 2008)

    Google Scholar 

  22. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151. IEEE Computer Society, Washington, DC, USA (1997)

    Google Scholar 

  23. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keidar, M., Sadeh-Or, E., Kaminka, G.A. (2012). Fast Frontier Detection for Robot Exploration. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds) Advanced Agent Technology. AAMAS 2011. Lecture Notes in Computer Science(), vol 7068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27216-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27216-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27215-8

  • Online ISBN: 978-3-642-27216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics