Skip to main content

Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks

  • Conference paper
Principles and Practice of Multi-Agent Systems (PRIMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7057))

Abstract

A Distributed Constraint Satisfaction Problem (DisCSP) is a constraint satisfaction problem in which variables and constraints are distributed among multiple agents. Various algorithms for solving DisCSPs have been developed, which are intended for general purposes, i.e., they can be applied to any network structure. However, if a network has some particular structure, e.g., the network structure is scale-free, we can expect that some specialized algorithms or heuristics, which are tuned for the network structure, can outperform general purpose algorithms/heuristics.

In this paper, as an initial step toward developing specialized algorithms for particular network structures, we examine variable-ordering heuristics in scale-free networks. We use the classic asynchronous backtracking algorithm as a baseline algorithm and examine the effect of variable-ordering heuristics. First, we show that the choice of variable-ordering heuristics is more influential in scale-free networks than in random networks. Furthermore, we develop a novel variable-ordering heuristic that is specialized to scale-free networks. Experimental results illustrate that our new variable-ordering heuristic is more effective than a standard degree-based variable-ordering heuristic. Our proposed heuristic reduces the required cycles by 30% at the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction problem: formalization and algorithms. IEEE Transactions on Knowledge and Data Engineering 10(5), 673–685 (1998)

    Article  Google Scholar 

  2. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A review. Journal of Autonomous Agents and Multi-agent Systems 3(2), 189–211 (2000)

    Article  Google Scholar 

  3. Hamadi, Y.: Backtracking in distributed constraint networks. International Journal on Artificial Intelligence Tools, 219–223 (1998)

    Google Scholar 

  4. Bessiere, C., Brito, I., Maestre, A., Meseguer, P.: Asynchronous backtracking without adding links: a new member in the ABT family. Artificial Intelligence 161, 7–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nguyen, V., Sam-Haroud, D., Faltings, B.: Dynamic distributed backjumping. In: Joint ERCIM/CoLogNet International Workshop on Constraint Solving and Constraint Logic Programming, pp. 71–85 (2004)

    Google Scholar 

  6. Mailler, R., Lesser, V.: Asynchronous partial overlay: A new algorithm for solving distributed constraint satisfaction problems. Journal of Artificial Intelligence Research 25, 529–576 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Silaghi, M.-C.: Framework for modeling reordering heuristics for asynchronous backtracking. In: IEEE/WIC/ACM International Conference on intelligent Agent Technology, pp. 529–536 (2006)

    Google Scholar 

  8. Zivan, R., Meisels, A.: Dynamic ordering for asynchronous backtracking on DisCSPs. Constraints 11(2-3), 179–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Barabási, A.-L.: Linked: The new science of networks. Perseus Publishing, Cambridge (2003)

    Google Scholar 

  11. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Devlin, D., O’Sullivan, B.: Preferential attachment in constraint networks. In: 21st International Conference on Tools with Artificial Intelligence, pp. 708–715 (2009)

    Google Scholar 

  13. Walsh, T.: Search in a small world. In: 16th International Joint Conference on Artificial Intelligence, pp. 1172–1177 (1999)

    Google Scholar 

  14. Walsh, T.: Search on high degree graphs. In: 17th International Joint Conference on Artificial Intelligence, pp. 266–274 (2001)

    Google Scholar 

  15. Chalupsky, H., Gil, Y., Knoblock, C.A., Lerman, K., Oh, J., Pynadath, D.V., Russ, T.A., Tambe, M.: Electric elves: Agent technology for supporting human organizations. AI Magazine 23(2), 11–24 (2002)

    Google Scholar 

  16. Brito, I., Meseguer, P.: Distributed meeting scheduling. In: Computer & Communications Industry Association, pp. 38–45 (2007)

    Google Scholar 

  17. Arbelaez, A., Hamadi, Y.: Exploiting weak dependencies in tree-based search. In: 24th Annual ACM Symposium on Applied Computing, pp. 1385–1391 (2009)

    Google Scholar 

  18. Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., Bouyakhf, E.H.: Asynchronous Inter-Level Forward-Checking for DisCSPs. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 304–318. Springer, Heidelberg (2009)

    Google Scholar 

  19. Hamadi, Y.: Interleaved backtracking in distributed constraint networks. International Journal on Artificial Intelligence Tools 11(2), 167–188 (2002)

    Article  Google Scholar 

  20. Sultanik, E., Lass, R.N., Regli, W.C.: Dynamic configuration of agent organizations. In: 21st International Joint Conference on Artificial Intelligence, pp. 305–311 (2009)

    Google Scholar 

  21. Mackworth, A.K.: Constraint Satisfaction. In: Encyclopedia of Artificial Intelligence, pp. 285–293 (1992)

    Google Scholar 

  22. Buchanan, M.: Nexus: Small worlds and the groundbreaking science of networks. W. W. Norton & Company, London (2003)

    Google Scholar 

  23. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Densmore, O.: An exploration of power-law networks (2009), http://backspaces.net/sun/PLaw/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okimoto, T., Iwasaki, A., Yokoo, M. (2012). Effect of DisCSP Variable-Ordering Heuristics in Scale-Free Networks. In: Desai, N., Liu, A., Winikoff, M. (eds) Principles and Practice of Multi-Agent Systems. PRIMA 2010. Lecture Notes in Computer Science(), vol 7057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25920-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25920-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25919-7

  • Online ISBN: 978-3-642-25920-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics