Skip to main content
  • 1584 Accesses

Abstract

The gas dynamics equations in Eulerian coordinates (t, x) are written in conservation PDE form as

$$ \frac{\partial } {{\partial t}}\left( \begin{gathered} \rho \hfill \\ \rho u \hfill \\ \rho e \hfill \\ \end{gathered} \right) + \frac{\partial } {{\partial x}}\left( \begin{gathered} \rho u \hfill \\ \rho u^2 + p \hfill \\ u\left( {\rho e + p} \right) \hfill \\ \end{gathered} \right) = 0, $$
((4.1))

where

$$ e = \frac{1} {2}u^2 + \frac{1} {{\gamma - 1\rho }}\frac{p} {\rho }. $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. HUI AND S. KUDRIAKOV. The role of coordinates in the computation of discontinuities in one-dimensional flow. Computational Fluid Dynamics Journal, 8: 495–510, 2000.

    Google Scholar 

  2. D.H. WAGNER. Equivalence of Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equations, 68: 118–136, 1987.

    Article  MATH  Google Scholar 

  3. J.P. BORIS AND D.L. BOOK. Flux-corrected transport. I.SHASTA, a fluid transport algorithm that works. J. Comput. Phys., 11: 38–69, 1973.

    Article  MATH  Google Scholar 

  4. B. VAN LEER. Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. J. Comput. Phys., 23: 276–299, 1977.

    Article  MATH  Google Scholar 

  5. A. HARTEN, B. ENGQUIST, S. OSHER AND S. R. CHAKRAVARTHY. Uniformly high order accuracy essentially non-oscillatory schemes III. J. Comput. Phys., 71: 231–303, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  6. G.S. JIANG AND C.W. SHU. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126: 202–228, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  7. W.H. HUI AND C.Y. LOH. A new Lagrangian method for steady supersonic flow computation, Part III: strong shocks. J. Comput. Phys., 103: 465–471, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.Y. LEPAGE AND W.H. HUI. A shock-adaptive Godunov scheme based on the generalized Lagrangian formulation. J. Comput. Phys., 122: 291–299, 1995.

    Article  MATH  Google Scholar 

  9. A. HARTEN AND J.M. HYMAN. Self-adjusting grid method for one-dimensional hyperbolic conservation laws. J. Comput. Phys., 50: 235–269, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  10. P.D. LAX AND B. WENDROFF. Syetems of conservation laws. Comm. Pure and Applied Mathematics, 13: 217–237, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  11. H.W. HUI AND C.Y. LOH. A new Lagrangian method for steady supersonic flow computation, Part 2: slipline resolution. J. Comput. Phys., 103: 450–464, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. W.H. HUI AND S. KUDRIAKOV. On wall overheating and other computational difficulties of shock-capturing methods. Computational Fluid Dynamics J., 10: 192–209, 2001.

    Google Scholar 

  13. K. XU. Dissipative mechanism in Godunov method. Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi, and J. Periaux (Eds), pp. 309–321, 2001.

    Google Scholar 

  14. H.Z. TANG. On the sonic point glitch. J. Comput. Phys., 202: 507–532, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. EINFELDT, C.D. MUNZ, P.L. ROE AND B. SJOGREEN. On Godunov-type methods near low densities. J. Comput. Phys., 92: 273–295, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.E. PEIERLS. Theory on von Neumann’s method of treating shocks. Technical Report LA-332, Los Alamos Scientific Laboratory, 1945.

    Google Scholar 

  17. R. LANDSHOFF. A numerical method for treating fluid flow in the presence of shocks. Technical Report LA-1930, Los Alamos Scientific Laboratory, 1955.

    Google Scholar 

  18. I.G. CAMERSON. An analysis of the errors caused by using artificial viscosity terms to represent steady state shock waves. J. Comput. Phys., 1: 1–20, 1966.

    Article  Google Scholar 

  19. L.G. MARGOLIN, H.M. RUPPEL AND R.B. DEMUTH. Gradient Scaling for a Nonuniform Meshes. in Numerical Methods for Laminar and Turbulent Flow, Pineridge Press, Swansea, UK, 1985.

    Google Scholar 

  20. W.F. NOH. Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J. Comput. Phys., 72: 78–120, 1987.

    Article  MATH  Google Scholar 

  21. P. GLAISTER. An approximate linearized Riemann solver for the euler equations for real gases. J. Comput. Phys., 74: 382–408, 1988.

    Article  MATH  Google Scholar 

  22. R. SANDERS AND A. WEISER. Higher resolution steggered mesh approach for nonlinear hyperbolic systems of conservation laws. J. Comput. Phys., 101: 314–329, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. MENIKOFF. Errors when shock waves interact due to numerical shock width. SIAM J. Sci. Comput., 15: 1227–1242, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. DONAT AND A. MARQUINA. Capturing shock reflections: An improved flux formula. J. Comput. Phys., 125: 42–58, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. GEHMEYR, B. CHENG AND D. MIHALAS. Noh’s constant-velocity shock problem revisited. Shock Waves, 7: 255–274, 1997.

    Article  MATH  Google Scholar 

  26. E.J. CARAMANA, M.J. SHASHKOV AND P.P. WHALEN. Formulations of artificial voscosity for multi-dimensional shock wave computations. J. Comput. Phys., 144: 70–97, 1998.

    Article  MathSciNet  Google Scholar 

  27. R.P. FEDKIW, A. MARQUINA AND R. MERRIMAN. An isobaric fix for the overheating problem in multimaterial compressible flows. J. Comput. Phys., 148: 545–578, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  28. W.J. RIDER. Revisiting wall heating. J. Comput. Phys., 162: 395–410, 2000.

    Article  MATH  Google Scholar 

  29. H.Z. TANG AND T.G. LIU. A note on the conservative schemes for the Euler equations. J. Comput. Phys., 218: 451–459, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. KUDRIAKOV AND W.H. HUI. On a new defect of shock-capturing methods. J. Comput. Phy., 227: 2105–2117, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. VON NEUMANN AND R.D. RICHTMYER. A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys., 21: 232, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  32. S.K. GODUNOV. A Difference Scheme for Numerical Computation of Discontinuous Solutions of Hydrodynamic Equations. Math. Sbornik, 47: 271, 1959.

    MathSciNet  Google Scholar 

  33. C.Y. LOH AND M.S. LIOU. Lagrangian solution of supersonic real gas flows. J. Comput. Phys., 104: 150–161, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hui, WH., Xu, K. (2012). 1-D Flow Computation Using the Unified Coordinates. In: Computational Fluid Dynamics Based on the Unified Coordinates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25896-1_4

Download citation

Publish with us

Policies and ethics