Skip to main content

Stress and Strain Determination

  • Chapter
  • First Online:
Handbook of Technical Diagnostics

Abstract

In Chap. 1 of this book, the term Technical Diagnostics has been introduced as the examination of symptoms and syndromes to determine the nature of faults or failures of technical objects. Their characteristics in different technological areas may be of very different nature. One of them is the reaction of technical objects to deform under loads. Those loads may be induced by external forces or thermal fields resulting in mechanical or thermal stresses, respectively. Another reason of deformation is the permanent presence of internal material forces mainly caused by material processing technologies at elevated temperatures such as welding, forging, rolling, or casting and referred to as residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Measure of interaction intensity between neutron and atomic nucleus of the material \( ({\bar{\text{A}}} \approx 1 0^{ - 28} {\text{m}}^{2} \)).

References

  1. Sharpe, W.N. (ed.): Springer Handbook of Experimental Solid Mechanics. Springer, New York (2008)

    Google Scholar 

  2. Flügge, W.: Tensor Analysis and Continuum Mechanics. Springer, Berlin (1972)

    Google Scholar 

  3. Dally, J.W., Riley, W.F.: Experimental Stress Analysis. McGraw-Hill Book Company, New York (1965)

    Google Scholar 

  4. Crandall, S.H., Dahl, N.C. (eds.): An Introduction to the Mechanics of Solids. McGraw-Hill, New York (1959)

    Google Scholar 

  5. www.hbm.com

  6. www.vishaypg.com/micro-measurements

  7. www.kyowa-ei.co.jp/english/products/index.htm

  8. ASTM E1561 Standard Practice for Analysis of Strain Gage Rosette Data

    Google Scholar 

  9. Guideline VDI/VDE/GESA 2635-1 Experimental structure analysis. Metal bonded resistance strain gages. Characteristics and test conditions

    Google Scholar 

  10. ASTM E251 Standard Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain Gauges

    Google Scholar 

  11. ASTM E1237 Standard Guide for Installing Bonded Resistance Strain Gages

    Google Scholar 

  12. Hoffmann, K.: An Introduction to Measurements using Strain Gages. Publisher Hottinger Baldwin Messtechnik GmbH, Darmstadt http://www.hbm.com/fileadmin/mediapool/techarticles/hoffmannbook/Hoffmann-book_EN.pdf. Consulted on 2012-01-17

  13. Guideline VDI/VDE/GESA 2635-2 Experimental structure analysis. Recommended practice for high-temperature strain measurements

    Google Scholar 

  14. ASTM E1319 Standard Guide for High-Temperature Static Strain Measurement

    Google Scholar 

  15. ASTM E1949 Standard Test Method for Ambient Temperature Fatigue Life of Metallic Bonded Resistance Strain Gages

    Google Scholar 

  16. Kraus, K., Waldhäusl, P.: Photogrammetrie, Band 1, Grundlagen und Standardverfahren. Ferd. Dümmlers, Bonn (1997)

    Google Scholar 

  17. Luhmann, T.: Nahbereichsphotogrammetrie. Grundlagen, Methoden und Anwendungen. Wichmann Verlag, Berlin, ISBN 978-3-87907-479-2 (2010)

    Google Scholar 

  18. Atkinson, K.B. (ed.): Close Range Photogrammetry and Machine Vision. Whittles Publishing, Latheronwheel, ISBN 1-870325-46-X (1996)

    Google Scholar 

  19. Mikhail, E.M., Bethel, J.S.: Intoduction to Modern Photogrammetry. John Wiley & Sons, Inc., New York, ISBN 0-171-30924-9 (2001)

    Google Scholar 

  20. Sharpe, W.N. (ed.): Springer Handbook of Experimental Solid Mechanics. Springer, New York (2008)

    Google Scholar 

  21. DIN EN ISO 9513 Metallic materials—calibration of extensometers used in uniaxial testing

    Google Scholar 

  22. ASTM E83 Standard practice for verification and classification of extensometer systems

    Google Scholar 

  23. IEC 61757-1/Ed2:2012-02: Fibre optic sensors—part 1: generic specification

    Google Scholar 

  24. Mukhopadhyay, S.C. (ed.): New developments in sensing technology for structural health monitoring. Lecture notes in electrical engineering, vol. 96. Springer (2011)

    Google Scholar 

  25. VDI/VDE 2660:2010 Part 1: experimental stress analysis. Strain sensors based on fibre bragg grating. Fundamentals, characteristics and sensor testing

    Google Scholar 

  26. Tietz, K.-D.: Zur Definition, Einteilung und Symbolik von Eigenspannungen. II. Kolloquium: Eigenspannungen und Oberflächenverfestigung, Vortragtexte, 4–5 Apr 1979

    Google Scholar 

  27. Macherauch, E., Scholtes, B.: Die Bedeutung von Eigenspannungen und die Problematik ihrer Erfassung. Werkstoffprfüfung, DVM-Tagung, Seite 267–289 (1987)

    Google Scholar 

  28. Macherauch, E.: Neuere Ergebnisse der Eigenspannungsforschung; Freiberger Forschungshefte: Beiträge zur Struktur- und Gefügeanalyse von Werkstoffen; Vorträge zum Berg- und Hüttenmännischen Tag 1987 in Freiberg. Deutscher Verlag für Grundstoffindustrie, Leipzig (1988)

    Google Scholar 

  29. Spieß, L., Teichert, G., Schwarzer, R., Behnken, H., Genzel, C.: Moderne Röntgenbeugung. Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, 2. überarbeitete und erweiterte Auflage. Vieweg+Teubner Verlag, Wiesbaden (2009). ISBN 978-3-8351-0166-1

    Google Scholar 

  30. Tietz, H.-D.: Grundlagen der Eigenspannungen–Entstehung in Metallen, Hochpolymeren und silikatischen Werkstoffen, Messtechnik und Bewertung. Deutscher Verlag für Grundstoffindustrie, Leipzig, ISBN 3-211-95814-2 (1982)

    Google Scholar 

  31. König, G.: Stand der Technik auf dem Gebiet der Eigenspannungsmessung. Seminarveranstaltung vom, Miskolc. 17–18 May 1989

    Google Scholar 

  32. Wohlfahrt, W., Macherauch, E.: Die Ursache des Schweißeigenspannungszustandes. Materialprüfung, Band 19, Heft 8, Seite 272–280 (1977)

    Google Scholar 

  33. Elfinger, F.X., Peiter, A., Theiner, W.A., Stücker, E.: Verfahren zur Messung von Eigenspannungen. VDI-Berichte 439, Seite 71–84 (1982)

    Google Scholar 

  34. Fujie, J., Wenjun, Z., Zhikang, Y.: Nondestructive test of weld residual stresses by accoustoelastic technique. China Welding, Band 3, Heft 1, Seite 45–52 (1994)

    Google Scholar 

  35. König, G., Kockelmann, H.: Ermittlung von Eigenspannungen in Folien und dünnen Walzbändern mittels Zerlege- und Abtrageverfahren unter Verwendung der Schattenmoirétechnik. Kolloquium über Eigenspannungen und Oberflächenverfestigung vom 29–30 Nov 1989, Ingenieurhochschule Zwickau (1989)

    Google Scholar 

  36. Peiter, A.: Ermittlung von Eigenspannungsverteilungen über den Probenquerschnitt. Härtereitechnische Mitteilungen, Band 31, Heft 1_2, Seite 7–12 (1976)

    Google Scholar 

  37. Muramatsu, Y., Kuroda, S.: In situ measurement of dynamic strain in welding by the laser speckle method. Application of the laser speckle method to strain measurement in the welding process (2nd report). Welding international, Band 10, Heft 9, Seite 689–696 (1996)

    Google Scholar 

  38. Vancrombrugge, R.: Messung von Eigenspannungen mit Dehnungsmessstreifen. Herausgeber: Fink, K.: Grundlagen und Anwendung des DMS., Verlag Stahleisen, Düsseldorf, S. 186–199 (1952)

    Google Scholar 

  39. Fritsche, C., Schubach, H.R.: Flächenhafte Verformungs- und Dehnungsmessung bei Schweißverbindungen. DVS-Berichte, Band 187. DVS-Verlag GmbH, Düsseldorf, ISBN 3-87155-492-8, Seite 189 (1997)

    Google Scholar 

  40. Christian, H., Elfinger, F.-X., Guth, W., Schüller, H.-J.: Ermittlung von Eigenspannungen in Schweißkonstruktionen. DVS-Berichte: Schweißen und Schneiden 88: Vorträge der GST in Münster vom 21–23 Sept 1988, Band 112, DVS-Verlag GmbH, Düsseldorf, Seite 129–131 (1988)

    Google Scholar 

  41. Hauk, V., Hougardy, H., Macherauch, E. (Hrsg.).: Residual Stresses, Measurement, Calculation, Evaluation. DGM Informationsgesellschaft, ISBN 3-88355-169-4 (1991)

    Google Scholar 

  42. Schajer, G.S.: Encyclopedia of Materials Science and Technology. Pergamon, Oxford (2001)

    Google Scholar 

  43. Spieß, L., Teichert, G., Schwarzer, R., Behnken, H., Genzel, C.: Moderne Röntgenbeugung. Vieweg und Teubner GWV Fachverlage GmbH, Wiesbaden, ISBN 9351-0166-1 (2009)

    Google Scholar 

  44. Kannengiesser, T., Babu, S.S., Komizo, Y., Ramirez, A.J.: In situ Studies with photons, neutrons and electrons scattering. Springer, Berlin Heidelberg, ISBN 978-3-642-14793-7 (2010)

    Google Scholar 

  45. Cheng, W., Finnie, I.: An overview of crack compilance method for residual stress measurement. 4th international conference on residual stress, baltimore, society experimental mechanics, pp. 449–458 (1994)

    Google Scholar 

  46. Schindler, H.J., Morf, U.: Load bearing capacity of cracked ROLLERS containing residual stresses. In: Schwalbe, K.H., Berger, C. (eds.) Proceedings of 10th European Conference on Fracture, vol. 2, pp. 767–774. EMAS Publishing, Warrington (1994)

    Google Scholar 

  47. Withers, P.J., Bhadeshia, H.K.D.H.: Residual stress part 1—measurement techniques. Mater. Sci. Technol. 17(4), 355–365 (1991). ISSN 0267-0836

    Google Scholar 

  48. Withers, P.J., Bhadeshia, H.K.D.H.: Residual stress part 2—nature and origins. Mater. Sci. Technol. 17(4), 366–375 (1991). ISSN 0267-0836

    Google Scholar 

  49. Beaney, E.M.: Accurate measurement of residual stress in any steel using the center-hole-method. Strain, Band 19, Heft 7 (1976)

    Google Scholar 

  50. Bynum, J.E.: Modification to the hole-drilling technique of measuring residual stresses for improved accuracy and reproducibility. Experimental mechanics, Band 21, Heft 1 (1981)

    Google Scholar 

  51. Shan Khan, M.Z., Saunders, D.S., Baldwin, N.J., Sanford, D.H.: An investigation of the use of strain gages to measure welding induced residual stresses. Exp. Mech. Band 37, Heft 3, Seite 264–271 (1997)

    Google Scholar 

  52. Flaman, M.T., Mills, B.E., Boag, J.M.: Analysis of stress-variation-with-depth measurement procedures for the centre hole method of residual stress measurements. Exp. Tech. Band 11, Heft 6, Seite 35–37 (1987)

    Google Scholar 

  53. Schwarz, T., Kockelmann, H.: Die Bohrlochmethode—ein für viele Anwendungsbereiche optimales Verfahren zur experimentellen Ermittlung von Eigenspannungen. Messtechnische Briefe, Band 29, Heft 2, Seite 33–38 (1993)

    Google Scholar 

  54. ASTM E 837–85: Standard test method for determining residual stresses by the hole-drilling strain-gage method, ASTM-Standard, Seite 810–816 (1985)

    Google Scholar 

  55. ASTM E 837–95: Standard test method for determining residual stresses by the hole-drilling strain-gage method, ASTM-Standard, Seite 633–639 (1995)

    Google Scholar 

  56. Schajer, G.S.: Measurement of non-uniform residual stresses using the hole-drilling method. Part I—stress calculation procedures. J. Eng. Technol. Band 110, Heft 4, Seite 338–343 (1988)

    Google Scholar 

  57. Nikola, W.E.: Practical subsurface residual stress evaluation by the hole drilling method. In: Proceedings of SEM Spring Conference on Experimental Mechanics, June 1986

    Google Scholar 

  58. Kockelmann, H., König, G.: Entwicklung und Qualifizierung von teilzerstörenden Eigenspannungsmessverfahren zur Ermittlung der Tiefenverteilung von Eigenspannungen. Abschlussbericht zum DFG-Forschungsvorhaben Ko 986/2-2, MPA Stuttgart, Feb 1989

    Google Scholar 

  59. Niku-Lari, A., Lu, J., Flavenot, J.F.: Measurement of residual-stress distribution by the incremental hole-drilling method. Exp. Mech. Band 25, Heft 6, Seite 175–185 (1985)

    Google Scholar 

  60. Niku-Lari, A., Lu, J., Flavenot, J.F.: Measurement of residual-stress distribution by the incremental hole-drilling method. J. Mech. Working Technol. Heft 11, Seite 167–188 (1985)

    Google Scholar 

  61. Flaman, M.T., Manning, B.H.: Determination of residual stress distribution by the inc remental hole-drilling method. Exp. Mech. Band 25, Heft 6, Seite 205–207 (1985)

    Google Scholar 

  62. Wohlfahrt, H., Nitschke-Pagel, T., Kaßner, M.: Schweißbedingte Eigenspannungen—Entstehung und Erfassung, Auswirkung und Bewertung. DVS-Berichte, Band 187. DVS-Verlag GmbH, Düsseldorf, ISBN 3-87155-492-8, Seite 6–13 (1997)

    Google Scholar 

  63. Bacon, G.E.: Neutron Diffraction. Clarendon Press, Oxford (1975)

    Google Scholar 

  64. Rietveld, H.M.: Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967)

    Article  Google Scholar 

  65. Young, R.A.: The Rietveld Method. Oxford University Press, Oxford, ISBN 0-19-855577-6 (1993)

    Google Scholar 

  66. Withers, P.J., Turski, M., Edwards, L., Bouchard, P.J., Buttle, D.J.: Recent advances in residual stress measurement. Int. J. Press. Vessels Pip. 85, 118–127 (2008)

    Article  Google Scholar 

  67. Satoh, K., Matsui, S.: Reaction stress and weld cracking under hindered contraction, IIW-Doc. IX-574-68, commission IX, pp. 353–375 (1968)

    Google Scholar 

  68. Watanabe, M., Satoh, K.: Effect of welding conditions on the shrinkage and distortion in welded structures. Weld. J. 40(8), 377s–384s (1961)

    Google Scholar 

  69. Watanabe, M., Satoh, K., Matsui, S.: Effect of Restraint on Root Cracking of Steel Welds. IIW-Doc. IX-409-64. Welding research Institute, Osaka University, Japan (1964)

    Google Scholar 

  70. Satoh, K., Nakajima, H., Toyosada, M.: Restraint Intensity of Weld Joints in the Structural Members Consisting of Plates and Stiffeners. IIW-Doc. X-660-72. Welding Research Institute, Osaka University and Technical Research Laboratory, Hitachi Shipbuilding and Engineering Co., Ltd, Osaka, Japan, Feb 1972

    Google Scholar 

  71. Masubuchi, K., Ich, T.: Computer analysis of degree of constraint of practical butt joints. Weld. J. 70(4), 166s–176s (1970)

    Google Scholar 

  72. Ueda, Y., Fukuda, K., Kim, Y.C.: Restraint stresses and strains due to slit weld in rectangular plate (report I)—formulae for conventional restraint intensities of a slit in finite plate -. Trans. Jpn. Weld. Res. Inst. 7(1), 11–16 (1978)

    Google Scholar 

  73. Ueda, Y, Kusachi, Y.: Theoretical Analysis of Local Stresses and Strains in RRC Test Specimens at Crack Initiation. IIW-Doc. X-662-72. Welding research Institue, Osaka University, Japan, May 1972

    Google Scholar 

  74. Masubuchi, K.: Control of Distortion in Welded Structures. IIW-Doc. IX-456-68. Welding Research Institute, Osaka University, Japan (1968)

    Google Scholar 

  75. Satoh, K., Ueda, Y., Kihara, H.: Recent trends of research into restraint stresses and strains in relation to weld cracking. Weld. World 11(5/6), 133–156 (1973)

    Google Scholar 

  76. Satoh, K., Ueda, Y., Matsui, S., Natsume, M., Terasaki, T., Fukuda, K., Tsuji, M.: Japanese studies on structural restraint severity in relation to weld cracking (preliminary report). Weld. World 15(7/8), 155–189 (1977)

    Google Scholar 

  77. Boellinghaus, T., Kannengiesser, T., Neuhaus, M.: Effects of the structural restraint intensity on the stress strain build up in butt joints. In: Cerjak, H., et al. (eds.) Mathematical Modelling of Weld Phenomena 7, TU Graz, pp. 651–669, ISBN 3-901351-99-X, (2005)

    Google Scholar 

  78. Genzel, C., Denks, I.A., Gibmeier, J., Klaus, M., Wagener, G.: The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl. Instrum. Methods Phys. Res. A 578, 23–33 (2007)

    Article  Google Scholar 

  79. ISO/TS 21432-2005: Non-destructive testing—standard test method for determining residual stresses by neutron diffraction

    Google Scholar 

  80. Karlsson, L.: Thermal stresses in welding. In: Hetnarski, R.B. (ed.) Thermal Stresses I, Hrsg. Elsevier Science Ltd, Amsterdam, ISBN: 0444877282, S. 299–389 (1986)

    Google Scholar 

  81. Tootoonian, M., Schajer, G.S.: Enhanced sensitivity residual stress measurements using taper hole drilling. The 4th international conference on residual stresses, ICRS-4, Baltimore, USA, Seite 52–62 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Kannengiesser or Klaus-Peter Gründer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kannengiesser, T., Gründer, KP. (2013). Stress and Strain Determination. In: Czichos, H. (eds) Handbook of Technical Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25850-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25850-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25849-7

  • Online ISBN: 978-3-642-25850-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics