Skip to main content

Optimal Hedging of American Options in Discrete Time

  • Conference paper
  • First Online:
Numerical Methods in Finance

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 12))

Abstract

In this article we study the price of an American style option based on hedging the underlying assets in discrete time. Like its European style analog, the value of the option is not given in general by an expectation with respect to an equivalent martingale measure. We provide the optimal solution that minimizes the hedging error variance. When the assets dynamics are Markovian or a component of a Markov process, the solution can be approximated easily by numerical methods already proposed for pricing American options. We proceed to a Monte Carlo experiment in which the hedging performance of the solution is evaluated. For assets returns that are either Gaussian or Variance Gamma, it is shown that the proposed solution results in lower root mean square hedging error than with traditional delta hedging.

MSC: 91G60, 91G20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options. Review of Financial Studies, 9:69–108.

    Article  Google Scholar 

  2. Bates, D. (2003). Empirical option pricing: A retrospection. Journal of Econometrics, 116:387–404.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchaud, J.-P. (2000). Elements for a Theory of Financial Risks. Physica A: Statistical Mechanics and its Applications, 285:18–28.

    Article  MATH  Google Scholar 

  4. Bouchaud, J.-P. and Potters, M. (2002). Back to basics: historical option pricing revisited. Philosophical Transactions: Mathematical, Physical & Engineering Sciences, 357:2019–2028.

    Google Scholar 

  5. Broadie, M. and Glasserman, P. (2004). A stochastic mesh method for pricing high-dimensional American options. Journal of Computational Finance, 7:35–72.

    Google Scholar 

  6. Carr, P. and Wu, L. (2004). Time-changed Lévy processes and option pricing. Journal of Financial Economics, 17:113–141.

    Article  Google Scholar 

  7. Carriere, J. (1996). Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics, 19:19–30.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T. (1999). Pricing contingent claims on stocks driven by Levy processes. The Annals of Applied Probability, 9:504–528.

    Article  MathSciNet  MATH  Google Scholar 

  9. Christoffersen, P., Jacobs, K., and Mimoumi, K. (2010). Volatility dynamics for the S&P 500: Evidence from realized volatility, daily returns and option prices. Review of Financial Studies, 23:3141–3189.

    Article  Google Scholar 

  10. Christoffersen, P., Jacobs, K., Ornthanalai, C., and Wang, Y. (2008). Option valuation with long-run and short-run volatility components. Journal of Financial Economics, 90:272–297.

    Article  Google Scholar 

  11. Cornalba, L., Bouchaud, J.-P., and Potters, M. (2002). Option pricing and hedging with temporal correlations. International Journal of Theoretical and Applied Finance, 5:307–320.

    Article  MathSciNet  MATH  Google Scholar 

  12. Del Moral, P., Rémillard, B., and Rubenthaler, S. (2006). Monte Carlo approximations of American options. Technical report, GERAD.

    Google Scholar 

  13. Del Moral, P., Rémillard, B., and Rubenthaler, S. (2011). Monte Carlo Approximations of American Options that Preserve Monotonicity and Convexity. In Carmona, R., Moral, P. D., Hu, P., and Oudjane, N., editors, American Styles Options Pricing, page In press. Springer.

    Google Scholar 

  14. Duan, J.-C. (1995). The GARCH option pricing model. Mathematical Finance, 5:13–32.

    Article  MathSciNet  MATH  Google Scholar 

  15. Duffie, D. (2001). Dynamic Asset Pricing Theory. Princeton University Press.

    Google Scholar 

  16. Engle, R. and Lee, G. (1999). Cointegration, causality, and forecasting: a festschrift in honor of Clive W.J. Granger, chapter A permanent and transitory component model of stock return volatility, pages 475–497. Oxford University Press, New York.

    Google Scholar 

  17. Garleanu, N., Pedersen, L. H., and Poteshman, A. M. (2009). Demand-based option pricing. Review of Financial Studies, 22:4259–4299.

    Article  Google Scholar 

  18. Heston, S. (1993). A closed-form solution for options with stochastic volatility with application to bond and currency options. Review of Financial Studies, 6:327–343.

    Article  Google Scholar 

  19. Heston, S. and Nandi, S. (2000). A closed-form GARCH option pricing model. Review of Financial Studies, 13:585–626.

    Article  Google Scholar 

  20. Huang, J.-Z. and Wu, L. (2004). Specification analysis of option pricing models based on time-changed Lvy processes. Journal of Finance, 59:1405–1439.

    Article  Google Scholar 

  21. Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42:281–300.

    Article  Google Scholar 

  22. Longstaff, F. and Schwartz, E. (2001). Valuing American options by simulation: A simple least-square approach. The Review of Financial Studies, 14:113–147.

    Article  Google Scholar 

  23. Madan, D. B., Carr, P., and Chang, E. C. (1998). The variance gamma process and option pricing.

    Google Scholar 

  24. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3:125–144.

    Article  MATH  Google Scholar 

  25. Naik, V. (1993). Option valuation and hedging strategies with jumps in the volatility of asset returns. Journal of Finance, 48:1969–1984.

    Article  Google Scholar 

  26. Papageorgiou, N., Rémillard, B., and Hocquard, A. (2008). Replicating the properties of hedge fund returns. Journal of Alternative Invesments, 11:8–38.

    Article  Google Scholar 

  27. Pochart, B. and Bouchaud, J.-P. (2004). Option pricing and hedging with minimum local expected shortfall. Quantitative Finance, 4:607–618.

    Article  MathSciNet  Google Scholar 

  28. Rémillard, B., Hocquard, A., and Papageorgiou, N. A. (2010). Option pricing and dynamic discrete time hedging for regime-switching geometric random walks models. Technical report, HEC Montreal.

    Google Scholar 

  29. Rémillard, B. and Rubenthaler, S. (2009). Optimal hedging in discrete and continuous time. Technical report, GERAD.

    Google Scholar 

  30. Schweizer, M. (1995). Variance-optimal hedging in discrete time. Mathematics of Operations Research, 20:1–32.

    Article  MathSciNet  MATH  Google Scholar 

  31. Tsitsiklis, J. and Roy, B. V. (1999). Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Transactions on Automatic Control, 44:1840–1851.

    Article  MATH  Google Scholar 

  32. Wilmott, P. (2006). Paul Wilmott on Quantitative Finance, volume 3. John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rémillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rémillard, B., Hocquard, A., Langlois, H., Papageorgiou, N. (2012). Optimal Hedging of American Options in Discrete Time. In: Carmona, R., Del Moral, P., Hu, P., Oudjane, N. (eds) Numerical Methods in Finance. Springer Proceedings in Mathematics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25746-9_5

Download citation

Publish with us

Policies and ethics