Skip to main content

Monte Carlo Approximations of American Options that Preserve Monotonicity and Convexity

  • Conference paper
  • First Online:
Numerical Methods in Finance

Abstract

It can be shown that when the payoff function is convex and decreasing (respectively increasing) with respect to the underlying (multidimensional) assets, then the same is true for the value of the associated American option, provided some conditions are satisfied. In such a case, all Monte Carlo methods proposed so far in the literature do not preserve the convexity or monotonicity properties. In this paper, we propose a method of approximation for American options which can preserve both convexity and monotonicity. The resulting values can then be used to define exercise times and can also be used in combination with primal-dual methods to get sharper bounds. Other application of the algorithm include finding optimal hedging strategies.

MSC code: 91G60 91G20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, L. and Broadie, M. (2004). Primal-dual simulation algorithm for pricing multidimensional American options. Management Science, 50:1222–1234.

    Article  Google Scholar 

  2. Bally, V., Pagès, G., and Printems, J. (2005). A quantization tree method for pricing and hedging multidimensional American options. Math. Finance, 15(1):119–168.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Ameur, H., Breton, M., and Martinez, J.-M. (2009). A dynamic programming approach for pricing derivatives in the GARCH model. Management Science, 55(2):252–266.

    Article  MATH  Google Scholar 

  4. Boyle, P. (1977). Options: A Monte Carlo approach. Journal of Financial Economics, 4:323–338.

    Article  Google Scholar 

  5. Brennan, M. and Schwartz, E. (1977). The valuation of American put options. Journal of Finance, XXXII:449–462.

    Google Scholar 

  6. Broadie, M. and Detemple, J. (1997). The valuation of American options on multiple assets. Mathematical Finance, 7:241–286.

    Article  MathSciNet  MATH  Google Scholar 

  7. Broadie, M., Detemple, J., Ghysels, E., and Torrès, O. (2000). Nonparametric estimation of American options’ exercise boundaries and call prices. Journal of Economic Dynamics and Control, 24:1829–1857.

    Article  MathSciNet  MATH  Google Scholar 

  8. Broadie, M. and Glasserman, P. (1997). Pricing American-style securities using simulation. Journal of Economic Dynamics and Control, 21:1323–1352.

    Article  MathSciNet  MATH  Google Scholar 

  9. Broadie, M. and Glasserman, P. (2004). A stochastic mesh method for pricing high-dimensional American options. Journal of Computational Finance, 7:35–72.

    Google Scholar 

  10. Carriere, J. (1996). Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics, 19:19–30.

    Article  MathSciNet  MATH  Google Scholar 

  11. Clément, E., Lamberton, D., and Protter, P. (2002). An analysis of a least squares regression method for American option pricing. Finance Stoch., 6:449 – 471.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, J., Ross, S., and Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7:229–263.

    Article  MATH  Google Scholar 

  13. Duan, J.-C., Gauthier, G., Sasseville, C., and Simonato, J.-G. (2003). Approximating American option prices in the GARCH framework. The Journal of Futures Markets, 23:915–929.

    Article  Google Scholar 

  14. Duan, J.-C., Gauthier, G., and Simonato, J.-G. (2004). Numerical pricing of contingent claims on multiple assets and/or factor - A low-discrepancy Markov chain approach derivatives in the GARCH model. Technical Report 80, GERAD.

    Google Scholar 

  15. Duan, J.-C. and Simonato, J.-G. (2001). American option pricing under GARCH by a Markov chain approximation. J. Econom. Dynam. Control, 25(11):1689–1718.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fu, M., Laprise, S., Madan, D., Su, Y., and Wu, R. (2001). Pricing American options: A comparison of Monte Carlo simulation approaches. Journal of Computational Finance, 4(3):39–88.

    Google Scholar 

  17. Haugh, M. B. and Kogan, L. (2004). Pricing american options: A duality approach. Operations Research, 52(2):pp. 258–270.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hocquard, A., Papageorgiou, N., and Rémillard, B. (2007). Optimal hedging strategies with an application to hedge fund replication. Wilmott Magazine, (Jan-Feb):62–66.

    Google Scholar 

  19. Kargin, V. (2005). Lattice option pricing by multidimensional interpolation. Math. Finance, 15(4):635–647.

    Article  MathSciNet  MATH  Google Scholar 

  20. Laprise, S., Fu, M., Marcus, S., Lim, A., and Zhang, H. (2006). Pricing American-style derivatives with European call options. Management Science, (1):95–110.

    Google Scholar 

  21. Longstaff, F. and Schwartz, E. (2001). Valuing American options by simulation: A simple least-square approach. The Review of Financial Studies, 14:113–147.

    Article  Google Scholar 

  22. Neveu, J. (1975). Discrete-parameter Martingales. North Holland, Amsterdam.

    MATH  Google Scholar 

  23. Papageorgiou, N., Rémillard, B., and Hocquard, A. (2008). Replicating the properties of hedge fund returns. Journal of Alternative Invesments, 11:8–38.

    Article  Google Scholar 

  24. Rémillard, B. and Rubenthaler, S. (2009). Optimal hedging in discrete and continuous time. Technical Report G-2009-77, Gerad.

    Google Scholar 

  25. Rogers, C. (2002). Monte Carlo valuation of American options. Mathematical Finance, 12:271–286.

    Article  MathSciNet  MATH  Google Scholar 

  26. Schweizer, M. (1995). Variance-optimal hedging in discrete time. Math. Oper. Res., 20(1):1–32.

    Article  MathSciNet  MATH  Google Scholar 

  27. Tilley, J. (1993). Valuing American options in a path simulation model. Transactions of the Society of Actuaries, 45:83–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rémillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Del Moral, P., Rémillard, B., Rubenthaler, S. (2012). Monte Carlo Approximations of American Options that Preserve Monotonicity and Convexity. In: Carmona, R., Del Moral, P., Hu, P., Oudjane, N. (eds) Numerical Methods in Finance. Springer Proceedings in Mathematics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25746-9_4

Download citation

Publish with us

Policies and ethics