Skip to main content

Comparing Chemical and Ecological Status in Catalan Rivers: Analysis of River Quality Status Following the Water Framework Directive

  • Chapter
  • First Online:
Emerging and Priority Pollutants in Rivers

Abstract

In Europe, diverse biological indices and metrics have been developed for ecological status assessment in rivers using macroinvertebrate, diatoms, macrophytes, and fish communities according to the Water Framework Directive (2000/60/EC). Additionally, priority and hazardous substances (pesticides, PAHs, heavy metals, chlorinated and non-chlorinated solvents, endocrine disruptors, etc.) must be analyzed using their environmental quality standards (EQS) according to the 2008/105/EC Directive. Chemical and biological elements have to be properly combined to set the final water quality status. We compare ecological and chemical status outputs in a Mediterranean watershed (the Catalan river basins, NE Spain), in order to provide useful information about the strengths and weaknesses of quality status classification in rivers.

A total of 367 sites with different sampling frequencies along the monitoring program period (for six following years) were used to determine the chemical and the ecological status in Catalan rivers. The results of the monitoring program carried out in Catalan rivers (2007–2009) show a higher percentage of nonfulfillment quality objectives due to ecological status rather than chemical status. A total of 144 river water bodies (39%) do not achieve the good biological quality according to the 2000/60/EC Directive, whereas 68 river water bodies (19%) do not achieve the EQS for priority and hazardous substances provided by the 105/2008/EC Directive (chemical status). Both chlorinated pesticides (mainly endosulfan, trifluralin, and hexachlorocyclohexanes) and endocrine disruptors (nonylphenols and octilfenols) are the main substances responsible for quality standard failures in Catalan rivers.

Some chemical values must be carefully considered, since they are found near the EQS and their threshold detection values. EQS values for some priority substances (mainly heavy metals and organic compounds) are extremely low, up to threshold detection levels, which make chemical results uncertain. Additionally, bad chemical status does not necessarily imply biological community damages, at least in short time. A total of 21 river water bodies (6%) showed priority substance concentrations over the EQS thresholds, whereas biological elements showed good quality. Biological indices based on community structure and composition cannot detect specific chemical alterations at very low concentrations. Complementary analysis for risk assessment using biomarkers, species sensitivity distribution toxicity test, or other emerging tools can provide additional information of possible coming problems, which should be considered for investigative monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan IJ, Vranaa B, Greenwooda R, Millsb GA, Knutssonc J, Holmbergd A, Guiguese N, Fouillace AM, Laschif S (2005) Strategic monitoring for the European water framework directive. Trends Anal Chem 25(7):704–715

    Article  Google Scholar 

  2. Bloch H (1999) European water policy facing the new millennium: the water framework directive. Assessing the ecological integrity of running waters. Vienna, Austria, pp 9–11

    Google Scholar 

  3. Coquery M, Morin A, Bécue A, Lepot B (2005) Priority substances of the European Water Framework Directive: analytical challenges in monitoring water quality. Trends Anal Chem 24(2):117–127

    Article  CAS  Google Scholar 

  4. Irvine K (2004) Classifying ecological status under the European Water Framework Directive: the need for monitoring to account for natural variability. Aquat Conservat Mar Freshwat Ecosyst 14(2):107–112

    Article  Google Scholar 

  5. Carsten von der Ohe P, Prüß A, Schäfer RB, Liess M, de Deckere E, Brack W (2007) Water quality indices across Europe, a comparison of the good ecological status of five river basins. J Environ Monit 9:970–978

    Article  Google Scholar 

  6. Hellawell JM (1986) In: Mellanby K (ed) Biological indicators of freshwater pollution and environmental management. Elsevier, London, p 546

    Google Scholar 

  7. Hering D, Johnson R, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwat Biol 51(9):1757–1785

    Article  Google Scholar 

  8. Johnson R, Hering D (2010) Spatial concurrency of benthic diatom, invertebrate, macrophyte, and fish assemblages in European streams. Ecol Appl 20(4):978–992

    Article  Google Scholar 

  9. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    Article  CAS  Google Scholar 

  10. Cairns J, Pratt JR (1993) A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh V (eds) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, pp 10–27

    Google Scholar 

  11. Metcalfe JL (1989) Biological water quality assessment of running waters based on macroinvertebrates communities: history and present status in Europe. Environ Pollut 60:101–139

    Article  CAS  Google Scholar 

  12. Sandin L, Hering D (2004) Comparing macroinvertebrate indices to detect organic pollution across Europe: a contribution to the EC Water Framework Directive intercalibration. Hydrobiologia 516(1–3):55–68

    Article  CAS  Google Scholar 

  13. Kelly MG, Cazaubon A, Coring E, Dell'Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10(2):215–224

    Article  Google Scholar 

  14. Prygiel J, Coste M, Bukowska J (1999) Review of the major diatom-based techniques for the quality assessment of rivers – State of the art in Europe. Agence de l'eau Artois Picardie, pp 224–238

    Google Scholar 

  15. Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O’Hare M (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566(1):211–234

    Article  CAS  Google Scholar 

  16. Pont D, Hugueny B, Rogers C (2007) Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fish Manage Ecol 14(6):427–439

    Article  Google Scholar 

  17. Muñoz I, Prat N (1994) A comparación between different biological water quality indexes in the Llobregat Basin (NE Spain). Ver Int Verein Limnol 25:1945–1949

    Google Scholar 

  18. Prat N (1991) Present trends in river studies. Oecol Aquat 10:1–12

    Google Scholar 

  19. Prat N, Rieradevall M (2006) 25-years of biomonioring in two mediterranean streams (Llobregat and Besòs basins, NE Spain). Limnetica 25(1–2):541–550

    Google Scholar 

  20. Sabater S, Guasch H, Picon A, Romaní A, Muñoz I (1996) Using diatom communities to monitor water quality in a river after the implllementation of a sanitation plan (river Ter, Spain). In: Proceedings of an International Symposium held at the Volksbildugsheim Grillhof, Austria (17-19 September 1995). Whiton BA, Rott E (eds) Use of algae for monitoring rives II, pp 97–103

    Google Scholar 

  21. Munné A, Prat N (2009) Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers. An intercalibration approach with the IBMWP index. Hydrobiologia 628:203–225

    Article  Google Scholar 

  22. Munné A, Prat N (2011) Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecol Indic 11:651–662

    Article  Google Scholar 

  23. Sostoa A, Casals F, Caiola NM, Vinyoles D, Sánchez S, Franch C (2003) Desenvolupament d’un índex d’integritat biòtica (IBICAT) basat en l’ús dels peixos com a indicadors de la qualitat ambiental dels rius a Catalunya. Documents tècnics de l’Agència Catalana de l’Aigua, p 203

    Google Scholar 

  24. Buffagni A, Erba S (2004) A simple procedure to harmonize class boundaries of European assessment systems. Discussion paper for the Intercalibration process – WFD CIS WG 2.A ECOSTAT, 6 February 2004, p 21

    Google Scholar 

  25. Buffagni A, Erba S, Birk S, Cazzola M, Feld C, Ofenbock T, Murray-Bligh J, Furse MT, Clarke R, Hering D, Soszka H, Van de Bund W (2005) Towards european inter-calibration for the water framework directive: procedures and examples for different river types from the E.C. project STAR, 11th STAR deliverable. STAR contract No: EVK1-CT 2001–00089. Rome (Italy). Quad Ist Ric Acque 123, Rome (Italy), IRSA, p 460

    Google Scholar 

  26. Heiskanen AS, Van de Bund W, Cardoso AC, Noges P (2004) Towards good of ecological status of surface waters in Europe – interpretation and harmonisation of the concept. Water Sci Technol 49:169–177

    CAS  Google Scholar 

  27. Pollard P, van de Bund W (2005) Template for the development of a boundary setting protocol for the purposes of the intercalibration exercise. Agreed version of WG 2.A Ecological Status. Version 1.2. 6 June 2005, Ispra, p 24

    Google Scholar 

  28. CEC (1999) Revised proposal for a list of priority substances in the context of the water framework directive (COMMPS procedure). Fraunhofer-Institut Umweltchemie und Ökotoxicologie. 98/788/3040/DEB/E1

    Google Scholar 

  29. Teixidó E, Terrado M, Ginebreda A, Tauler R (2010) Quality assessment of river waters using risk indexes for substances and sites based on the COMMPS procedure. J Environ Monit 12:2120–2127

    Article  Google Scholar 

  30. Daginus K, Gottardo S, Mostrag-Szlichtyng A, Wilkinson H, Whitehouse P, Paya-Perez A, Zaldívar JM (2010) A modelling approach for the prioritisation of chemicals under the water framework directive. European Commission – Joint Research Centre, Italy; Environment Agency, UK. EUR 24292 EM

    Google Scholar 

  31. James A, Bonnomet V, Morin A, Fribourg-Blanc B (2009) Implementation of requirements on Priority Substances within the context of the Water Framework Directive. Prioritisation process: Monitoring-based ranking. Contract Nº 07010401/2008/508122/ADA/D2

    Google Scholar 

  32. ACA – Catalan Water Agency (2009) Pla de Gestió del Districte de Conca Fluvial de Catalunya (Catalan River Basin District Management Plan). Memòria, p 393

    Google Scholar 

  33. ACA – Catalan Water Agency (2010) Estat de les Masses d’Aigua a Catalunya 2007–2009. Resultats del Programa de Seguiment i Control. Barcelona, p 65

    Google Scholar 

  34. Prat N, Munné A, Rieradevall M, Solà C, Bonada N (1999) La qualitat ecològica del Llobregat, el Besòs, el Foix i la Tordera. Informe 1997. Estudis de la qualitat ecològica dels rius. 7. p 154. Àrea de Medi Ambient de la Diputació de Barcelona.

    Google Scholar 

  35. ACA – Catalan Water Agency (2005) Caracterització de les masses d’aigua i anàlisi del risc d’incompliment dels objectius de la Directiva Marc de l’Aigua (2000/60/CE) a Catalunya. Agència Catalana de l’Aigua. Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya. Octubre, 2005, p 860

    Google Scholar 

  36. European Commission (2003) Overall approach to the classification of the ecological status and ecological potential. Water Framework Directive. Common Implementation Strategy. Working Group 2A. Ecological Status (ECOSTAT). 27 Nov 2003, p 47

    Google Scholar 

  37. Williams DD (2006) The biology of temporary waters. Oxford University Press, New York, p 337

    Google Scholar 

  38. Sporka F, Vlek HE, Bulánková E, Krno I (2006) Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobilologia 566:543–555

    Article  Google Scholar 

  39. Alba-Tercedor J, Jáimez-Cuéllar P, Álvarez M, Avilés J, Bonada N, Casas J, Mellado A, Ortega M, Pardo I, Prat N, Rieradevall M, Robles S, Sáinz-Cantero CE, Sánchez-Ortega A, Suárez ML, Toro M, Vidal-Albarca MR, Vivas S, Zamora-Muñoz C (2004) Caracterización del estado ecológico de los ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP’). Limnetica 21(3–4):175–185

    Google Scholar 

  40. UNE-EN ISO 10301 (1997) Water quality. Determination of highly volatile halogenated hydrocarbons. Gas-chromatographic methods

    Google Scholar 

  41. Lee H, Weng L, Chau AS (1984) Chemical derivatization analysis of pesticides residues. VIII. Analysis of 15 chlorophenols in natural water by in situ acetylation. J Assoc Off Anal Chem 67(4):789–794

    CAS  Google Scholar 

  42. León VM, Llorca-Pórcel J, Álvarez B, Cobollo MA, Muñoz S, Valor I (2006) Analysis of 35 semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography–mass spectrometry. Part II: Method validation. Anal Chim Acta 558:261–266

    Article  Google Scholar 

  43. Grimalt JO, Vilanova R, Fernández P, Martínez C (2001) Organochlorine pollutants in remote mountain lake waters. J Environ Qual 30:1286–1295

    Article  Google Scholar 

  44. Grimalt JO, Fernández P, Carrera G (2002) Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36:2581–2588

    Article  Google Scholar 

  45. Shen L, Wania F (2005) Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J Chem Eng Data 50:742–768

    Article  CAS  Google Scholar 

  46. Weber J, Halsall CJ (2006) Endosulfan and ç-HCH in the Arctic: an assessment of surface seawater concentrations and air-sea exchange. Environ Sci Technol 40:7570–7576

    Article  CAS  Google Scholar 

  47. Barceló D, Petrovic M (2007) Under the analytical spotlight, contaminants emerge: Report on the 2nd EMCO Workshop. Emerging contaminants in wastewaters: monitoring tools and treatment technologies. Belgrade (Serbia), 26 and 27 April 2007. Trac-Trends Anal Chem 26:647–649

    Article  Google Scholar 

  48. Ginebreda A, Muñoz I, López de Alda M, Brix R, López-Doval J, Barceló D (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat river (NE Spain). Environ Int 36:153

    Article  CAS  Google Scholar 

  49. Ricart M, Guasch H, Barceló D, Brix R, Conceição MH, Geiszinger A, López de Alda MJ, López-Doval JC, Muñoz I, Postigo C, Romaní AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383(1–2):52–61

    Article  CAS  Google Scholar 

  50. Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61

    Article  CAS  Google Scholar 

  51. Damásio J, Taulera R, Teixidó E, Rieradevall M, Prat N, Riva MC, Soares A, Barata C (2008) Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). Aquat Toxicol 87(4):310–320

    Article  Google Scholar 

  52. Damásio JB, Barata C, Munné A, Ginebreda A, Guasch H, Sabater S, Caixach J, Porte C (2006) Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere 66(7):1206–1216

    Article  Google Scholar 

  53. Carafa R, Real M, Munné A, Ginebreda A, Guasch H, Tirapu L (2010) Recommendations for Water Monitoring Programs of priority and emerging pollutants. Contribution from newly developed methods. KEYBIOEFFECTS project: cause-effect relations of key pollutants on the biodiversity of European rivers, p 67

    Google Scholar 

  54. Carafa R, Fanggiano L, Real M, Munné A, Ginebreda A, Guasch H, Flo M, Tirapu L, Carsten von der Ohe P (2011) Water toxicity assessment in Catalan rivers (NE Spain) using Species Sensitivity Distribution and Artificial Neural Networks. Science of the Total Environmental 409:4269–4279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Munné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munné, A. et al. (2012). Comparing Chemical and Ecological Status in Catalan Rivers: Analysis of River Quality Status Following the Water Framework Directive. In: Guasch, H., Ginebreda, A., Geiszinger, A. (eds) Emerging and Priority Pollutants in Rivers. The Handbook of Environmental Chemistry(), vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25722-3_9

Download citation

Publish with us

Policies and ethics