Skip to main content

NGAL Curve for the Early Diagnosis of AKI in Heart Failure Patients

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2012

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

  • 2253 Accesses

Abstract

There has been increasing interest of clinicians in the high frequency of acute kidney injury (AKI) in acute heart failure (AHF). The most important mechanism behind cardiorenal syndrome type 1 is frequently an iatrogenic derangement caused by inappropriate use of diuretics or other strategies to alleviate congestion such as extracorporeal ultrafiltration [1]. In the attempt to remove fluid overload, severe hemodynamic consequences may lead to renal hypoperfusion and AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ronco C, McCullough PA, Anker SD, et al (2010) Cardiorenal syndromes: an executive summary from the consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 165: 54–67

    Article  PubMed  Google Scholar 

  2. Ronco C, Grammaticopoulos S, Rosner M, et al (2010) Oliguria, creatinine and other biomarkers of acute kidney injury. Contrib Nephrol 164: 118–127

    Article  PubMed  Google Scholar 

  3. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73: 1008–1016

    Article  PubMed  CAS  Google Scholar 

  4. Paragas N, Qiu A, Zhang Q, et al (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17: 216–222

    Article  PubMed  CAS  Google Scholar 

  5. Koyner JL, Bennett MR, Worcester EM, et al (2008) Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int 74: 1059–1069

    Article  PubMed  CAS  Google Scholar 

  6. Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH (2010) Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail 16: 49–54

    Article  PubMed  CAS  Google Scholar 

  7. Nickolas TL, O’Rourke MJ, Yang J, et al (2008) Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 148: 810–819

    Article  PubMed  Google Scholar 

  8. Alvelos M, Pimentel R, Pinho E, et al (2011) Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardiorenal syndrome in the general ward. Clin J Am Soc Nephrol 6: 476–481

    Article  PubMed  CAS  Google Scholar 

  9. Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268: 10425–10432

    PubMed  CAS  Google Scholar 

  10. Flo TH, Smith KD, Sato S, et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432: 917–921

    Article  PubMed  CAS  Google Scholar 

  11. Mishra J, Ma Q, Prada A, et al (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14: 2534–2543

    Article  PubMed  CAS  Google Scholar 

  12. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinaseassociated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24: 307–315

    Article  PubMed  CAS  Google Scholar 

  13. Mishra J, Dent C, Tarabishi R, et al (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365: 1231–1238

    Article  PubMed  CAS  Google Scholar 

  14. Kusaka M, Kuroyanagi Y, Mori T, et al (2008) Serum neutrophil gelatinase-associated lipocalin as a predictor of organ recovery from delayed graft function after kidney transplantation from donors after cardiac death. Cell Transplant 17: 1–100

    Article  Google Scholar 

  15. Dent C, Ma Q, Dastrala S, et al (2007) Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care 11: R127

    Article  PubMed  Google Scholar 

  16. Zappitelli M, Washburn KK, Arikan AA, et al (2007) Urine neutrophil gelatinase associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11: R84

    Article  PubMed  Google Scholar 

  17. Cruz DN, de Cal M, Garzotto F, et al (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36: 444–451

    Article  PubMed  CAS  Google Scholar 

  18. de Geus HR, Bakker J, Lesaffre EM, le Noble JL (2011) Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med 183: 907–914

    Article  PubMed  Google Scholar 

  19. Shapiro NI, Trzeciak S, Hollander JE, et al (2010) The diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin in the prediction of acute kidney injury in emergency department patients with suspected sepsis. Ann Emerg Med 56: 52–59

    Article  PubMed  Google Scholar 

  20. Haase-Fielitz A, Bellomo R, Devarajan P, et al (2009) Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study. Crit Care Med 37: 553–560

    Article  PubMed  CAS  Google Scholar 

  21. Makris K, Markou N, Evodia E, et al (2009) Urinary neutrophil gelatinase-associated lipocalin (NGAL)as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med 47: 79–82

    Article  PubMed  CAS  Google Scholar 

  22. Malyszko J, Bachorzewska-Gajewska H, Poniatowski B, Malyszko JS, Dobrzycki S (2009) Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease. Renal Failure 31: 910–919

    Article  PubMed  CAS  Google Scholar 

  23. Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Michaluk-Skutnik J (2010) Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity? Pediatr Nephrol 25: 889–897

    Article  PubMed  Google Scholar 

  24. Yilmaz A, Sevketoglu E, Gedikbasi A, et al (2009) Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol 24: 2387–2392

    Article  PubMed  Google Scholar 

  25. Bagshaw SM, Bennett M, Haase M, et al (2010) Plasma and urine neutrophil gelatinaseassociated lipocalin in septic versus non-septic acute kidney injury in critical illness Intensive Care Med 36: 452–461

    Article  PubMed  CAS  Google Scholar 

  26. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A; NGAL Meta-analysis Investigator Group (2009) Accuracy of neutrophil gelatinase-associated lipocalin (ngal) in diagnosis and prognosis in acute kidney injury: A systematic review and meta-analysis. Am J Kidney Dis 54: 1012–1024

    Article  PubMed  CAS  Google Scholar 

  27. Damman K, Voors AA, Hillege HL, et al (2010) Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail 12: 974–982

    Article  PubMed  Google Scholar 

  28. Valle R, Aspromonte N, Milani L, et al (2011) Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail Rev 16: 519–529

    Article  PubMed  CAS  Google Scholar 

  29. Gottlieb SS, Abraham W, Butler J, et al (2002) The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail 8: 136–141

    Article  PubMed  Google Scholar 

  30. Costanzo MR, Guglin ME, Saltzberg MT, et al (2007) Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49: 675–683

    Article  PubMed  CAS  Google Scholar 

  31. Cai L, Rubin J, Han W, Venge P, Xu S (2010) The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol 5: 2229–2235

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ronco, C., Noland, B. (2012). NGAL Curve for the Early Diagnosis of AKI in Heart Failure Patients. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics