Skip to main content

Abstract

Sediment is transported by river flow in the forms of suspended load and bed load. The fluvial process is a result of sediment deposition and erosion. Flood, avulsion and sediment transportation and deposition are the natural processes in alluvial rivers and water diversion, channelization, and navigation are human disturbances to rivers. The fluvial process is the macroscopic view and long-term consequence of sediment movement. This chapter introduces the basic knowledge of sediment movement and fluvial processes, paying attention to the fall velocity of sediment particles, flow resistance, bed forms, and the rate of sediment transportation, hyperconcentrated floods, river patterns, and unsteady sediment transportation. This knowledge is useful for alluvial river management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksu A.E. and Piper D.T.W., 1983. Progradation of the late quaternary dediz delta, Turkey. Marine Geology, 54(1/2), 1–25

    Article  Google Scholar 

  • Allen J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89–101

    Article  Google Scholar 

  • Allen J.R.L., 1983. River bed forms: Progress and problems, in Modern and Ancient Fluvial Systems, Collinson, and Lewin. (eds.), Oxford, Blackwell, Special Publication of the International Association of Sedimentology

    Google Scholar 

  • Bagnold R.A., 1956. Flow of cohesionless grains in fluid, Philos. Trans. actions, Royal Soc. of London, Series. B, 249, 235–297

    Article  Google Scholar 

  • Bakhmeteff B.A. and Allan W., 1946. The mechanism of energy loss in fluid friction, Trans. actions, American society of Civil Enginears,111, 1043–1102

    Google Scholar 

  • Barry J.F., Biggs Maurice J., Duncan Steven N., Francoeur. and William D., Meyer., 1997. Physical characterization of microform bed cluster refugia in 12 headwater streams, New Zealand [J]. New Zealand Journal of Marine and Freshwater Research, 31,413–422

    Article  Google Scholar 

  • Barry J.J., Jeffrey J., Buffington John M., King John G., Goodwin Peter., 2006. Performance of bed load transport equations in mountain gravel-bed rivers: a re-analysis. Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), Reno, NV, USA, 90–97

    Google Scholar 

  • Barua D.K., Klaassen G.J. and Mahmood. 1995, On the adaption and equilibrium of Bangladesh rivers, 5th International Symposium on river Sedimentation, Central Board of Irrigation and Power, Oxford & IBH Publishing Co. PVT. Ltd, pp. 277–292.

    Google Scholar 

  • Bathurst J.C., Graf W.H. and Cao H.H., 1987. Bed load discharge equations for steep mountain rivers. In: Thorne C.R., Bathurst J.C., Hey R.D. (eds.), Sediment Transport in Gravel-bed Rivers. John Wiley, Chichester, UK, 453–491

    Google Scholar 

  • Carson M.A. and Griffiths G., 1987. A Bed load transport in gravel bed channels. Journal of Hydrology (New Zealand), 26(1), 1–151

    Google Scholar 

  • Chien N., Wan Z.H. and McNown J., 1998. Mechanics of Sediment Movement, ASCE Press, New York

    Google Scholar 

  • Chien N., Wan Z.H., and McNown J. 1998, Mechanics of Sediment Movement, ASCE Press, New York.

    Google Scholar 

  • Chin A., 1999. The morphologic structure of step-pool in mountain streams. Geomorphology, 27, 191–204

    Article  Google Scholar 

  • Clague J.J., Luternauer J.L. and Hebda R.J., 1983. Sedimentary environments and postglacial history of the Fraser delta and lower Fraser valley, British Columbia. Canadian Journal of Earth Science, 20(8), 1314–1326

    Article  Google Scholar 

  • Culbertson J.K. and Nordin C.F., 1960. Discussion of the paper-Discharge formula for straight alluvial channels, J. Hyd. Div., Proc. Amer. Soc. Civil Engrs., 86(Hy6), 98–102

    Google Scholar 

  • Du G.H., Peng R.Z. and Wu D.Y., 1980. Reconstruction of the Dujiangyan Project and gravel bed load transportation problem. Sediment Research, 1, 12–22 (in Chinese)

    Google Scholar 

  • Einstein H.A., 1934. Der hydraulische oder profil radius. Scherizerisch Bauzeitung, 103, (8)

    Google Scholar 

  • Einstein H.A. and Shen S.W., 1964. A study of meandering in straight alluvial channels. Journal of Geological Research, 5239–5247

    Google Scholar 

  • Einstein H.A. and Chien Ning., 1958. Discussion of the Paper-Mechanics of Streams with Movable Beds of Fine Sand, Trans., Amer. Soc. Civil Engrs, 123, 553–562

    Google Scholar 

  • Field J., 2001. Channel avulsion on alluvial fans in southern Arizona. Geomorphology, 37, 91–104

    Article  Google Scholar 

  • Fisk H.N., 1944. Geological investigation of the alluvial valley of the Lower Mississippi River. Report of WAR Department, Corps of Engineering, U.S. Army

    Google Scholar 

  • FISRWG (Federal Interagency Stream Restoration Working Group), 1998. Stream Corridor Restoration: Principles, processes and practices The national technical information service, USA. (Available online at: Http://www.nrcs.usda.gov/techinica//stream-restoration)

    Google Scholar 

  • Gandolfi G., et al., 1982. Composition and along-shore disposal of sand from the Po and Adige Rivers since the Pre-Etruscan Age, J. of Sed. Petrol, 52(3), 797–805

    Google Scholar 

  • Gole C.V. and Chitale S.V., 1966. Inland delta building activity of Kosi River. Journal of the Hydraulics Division, ASCE, 92(HY2), 111–126

    Google Scholar 

  • Grant G.E., Swanson F.J. and Wolman M.G., 1990. Pattern and origin of stepped-bed morphology in high gradient streams, Western Cascades, Oregon. Geological Survey of America Bulletin 102,340–352

    Article  Google Scholar 

  • Grass A.J., 1971. Structural features of turbulent flow over smooth and rough boundaries. Journal of Fluid Mechanics 50(2), 233–255

    Article  Google Scholar 

  • Gregory K.J., Gurnel A.M., Hill C.T. and Tooth S., 1994. Stability of the pool-riffle sequence in changing river channels. Regulated Rivers: Research and Management, 9, 35–43

    Article  Google Scholar 

  • Hu Y.S., Zhang H.W., Liu G.Z., Wang, K.C., Peng, R.S., Liu Y.L. 1998. River realignment for Wandering channels is lower Yellow River. Zhengzhou: Yellow River water Conservancy Press.

    Google Scholar 

  • Hui Y.J. and Chen Z.C., 1981. Preliminary analysis of the roughness on the Three Gorges reaches of the Yangtze River. Research Report artment of Dept. of Hydraulic Engineering, Tsinghua University

    Google Scholar 

  • Janda R.J. and Meyer D.F., 1985. Channel morphology changes caused by debris flow, hyperconcentrated flow, and sediment-laden streamflow, Toutle River, Mount St. Helens, Washington, Proceedings, International Workshop on Flow at Hyperconcentrations of Sediment, IRTCES (International Research and Training Center on Erosion and Sedimentation) Publication, Beijing, paper III–6

    Google Scholar 

  • Julien P.Y., 1989. Laboratory analysis of hyperconcentrations, Proceedings. International Symposium on Sediment Transport Modeling, ASCE, New Orleans, 681–686

    Google Scholar 

  • Julien P.Y. and Lan Y.Q., 1991. Rheology of hyperconcentrations. Journal of Hydraulic Engineering, ASCE, 115(3), 346–353

    Article  Google Scholar 

  • Keller E.A. and Melhorn W.N., 1973. Bedforms and fluvial processes in alluvial stream channels: Selected observations. In: Fluvial Geomorphology, Morisawa M. (ed.), Binghamton NY: Ney York State University Publications in Geomorphology, 253–283

    Google Scholar 

  • Keller E.A. and Melhorn W.N., 1978. Rhythmic spacing and origin of pools and riffles. Geological Society of America Bulletin, 89, 723–730

    Article  Google Scholar 

  • Keller E.A., 1972. Development of alluvial stream channels: A five-stage model. Bulletin of the Geological Society of America, 83,1531–1536

    Article  Google Scholar 

  • Kim H.T., Kline S.J. and Reynolds W.C., 1971. The production of turbulence near a smooth wall in a turbulent boundary layer. Journal of Fluid Mechanics, 50(1), 133–160

    Article  Google Scholar 

  • Kline S.J., Reynolds W.C., Schraub F.A., Runstadler P.W., 1967. The structure of turbulent boundary layers. Joural of Fluid Mechanics, 30(4), 741–773

    Article  Google Scholar 

  • Knighton D., 1984. Fluvial forms and process. Edward Arnold, London

    Google Scholar 

  • Knighton D., 1998. Fluvial Forms and Processes- A New Perspective, John Wiley and Sons, New York

    Google Scholar 

  • Lane E.W., 1955. The importance of fluvial morphology in hydraulic engineering. Proceedings of the American Society of Civil Engineers 81(745), 1–17

    Google Scholar 

  • Lane E.W., 1953. Progress report of studies on the design of stable channels by the Bureau of Reclamation. Proceedings, Amer. Soc. Civil Eengrs., 79(280)

    Google Scholar 

  • Leeder M.R., 1983. Sedimentology-Process and Product. George Allen & Unwin Publishers Ltd

    Google Scholar 

  • Leeder M.R., 1978. A quantitative stratigraphic model for alluvium with special reference to channel deposit density and interconnectedness, Fluvial Sedimentology, Memoir 5, Miall A.D. (ed.), Can. Soc. Petrol. Geol., 587–596

    Google Scholar 

  • Leopold L.B., 1994. A view of the river. Harvard University Press. Cambridge, Massachusetts

    Google Scholar 

  • Leopold L.B., Wolman M.G. and Miller J.P., 1964. Fluvial Processes in Geomorphology, W.H. Freeman and Company, San Francisco and London

    Google Scholar 

  • Li C.H. and Sun M.X., 1964. Criteria for threshold shear stress and ripple formation, Proceedings. Nanjing Hydraulic Research Institute (River & Habour Division), (in Chinese)

    Google Scholar 

  • Mantz P.A., 1977. Incipient transport of fine grains and flakes by fluids-extended shields diagram. Journal of the Hydraulies Divison, Proc., Amer. Soc. Civil Engrs, 103(HY6), 601–616

    Google Scholar 

  • Martin Y., 2003. Evaluation of bed load transport formulae using field evidence from the Vedder River, British Columbia [J]. Geomorphology, 53, 75–95

    Article  Google Scholar 

  • Meyer-Peter E. and Muller R., 1948. Formulas for bedload transport. Proceedings, 3rdmeeting of IAHR, Stockholm, 39–64

    Google Scholar 

  • Miller M.C., McCave I.N. and Komar P.D., 1977. Threshold of sediment motion under uniderectional Currents. Sedimentology, 24(4), 507–527

    Article  Google Scholar 

  • O’Brien J.S. and Julien P.Y., 1995. Physical properties and mechanics of hyperconcentrated sediment flows, Proceedings, ASCE Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazards in Utah, 1985. Utah Water Research Lab, Series UWRL/C-85103, 260–279

    Google Scholar 

  • Offen G.R. and Kline S.J., 1974. Combined dye-streak and hydrogen-bubble visual observations of a turbulent boundary layer. Journal of Fluid Mechanics, 62(2), 223–339

    Article  Google Scholar 

  • Paintal A.S., 1971. A stochastic model for bed load transport. Journal of hydraulic research, 9(4), 527

    Article  Google Scholar 

  • Panin N., Panin S., Herz N. and Noakes J.E., 1983. Radiocarbon dating of Danube delta deposits. Quaternary Research, 19(2), 249–255

    Article  CAS  Google Scholar 

  • Qi P. and Han Q., 1991. The resistance of hyperconcentrated floods in the Yellow River. People’s Yellow River, 3, 16–21 (in Chinese)

    Google Scholar 

  • Qi P. and Ru Y., 1995. Sediment delivery capacity of the Yellow River channel downstream of the Aishan Station. People’s Yellow River, 5, 5–11 (in Chinese)

    Google Scholar 

  • Qi P. and Zhao A., 1984. Propagation and variation of the 1977’s hyperconcentrated flood waves in the lower Yellow River. People’s Yellow River, 4, 1–8 (in Chinese)

    Google Scholar 

  • Qi P. and Zhao Y., 1985. The characteristics of sediment transport and problems of bed formation by flood with hyperconcentration of sediment in the Yellow River. Proceedings, International Workshop on Flow at Hyperconcentrations of Sediment, IRTCES Publication, Beijing, Paper III–3

    Google Scholar 

  • Qian N. and Wang Z.Y., 1984. A preliminary study on the mechanism of debris flows. Acta Geographica Sinica, 39(1) (in Chinese)

    Google Scholar 

  • Qian N. and Wan Z.H., 1983. Mechanics of sediment movement. Chinese Science Press, Beijing (in Chinese)

    Google Scholar 

  • Qian N. (ed), 1989. Movement of hyperconcentrated flow, Tsinghua University Press, Beijing (in Chinese)

    Google Scholar 

  • Qian N., Zhang R., Wan Z. and Wang X., 1985. The hyperconcentrated flow in the main stem and tributaries of the Yellow River. Proceedings, International Workshop on Flow at hyperconcentrations of Sediment, IRTCES Publication, Beijing, Paper III–4

    Google Scholar 

  • Rantz S.E., et al., 1982. Measurement and computation of streamflow. USGS Water Supply Paper 2175, 2 vols. U.S. Geological Survey, Washington, DC Pp.347 165 Fig, 12 Tab, 82 Ref

    Google Scholar 

  • Rouse H., 1965. Critical analysis of open-channel resistance. Journal of the Hydraulics Division, ASCE, 19(HY4), 1–25

    Google Scholar 

  • Rouse H., 1946. Elementary Mechanics of Fluids. John Wiley and Sons

    Google Scholar 

  • Schumm S.A., 1977. The fluvial system. John Wiley and Sons, New York

    Google Scholar 

  • Scott K.M. and Dinehart R.L., 1985. Sediment transport and deposit characteristics of hyperconcentrated streamflow evolved from lahars at Mount St. Helens, Proceedings, International Workshop on Flow at Hyperconcentrations of Sediment, IRTCES Publication, Beijing, Paper III–2

    Google Scholar 

  • Shields A., 1936. Anwendung der Aechlichkeitsmechanik und der Turbulenzforschung auf die Geschiebewegung, Mitt. Preussische Versuchsanstalt fur Wasserbau und Schiffbau, Berlin

    Google Scholar 

  • Simons D.B. and Richardson E.V., 1966. Resistance of flow in alluvial channels. USGS Professional Paper 422-J

    Google Scholar 

  • Slingerland R. and Smith N.D., 1998. Necessary conditions for a meandering-river avulsion. Geology, 26(5), 435–438

    Article  Google Scholar 

  • Stokes G.G., 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of Cambridge Philosophy Society, 9 Pt( 2), 8–106

    Google Scholar 

  • Stouthamer E., 2001. Sedimentary products of avulsions in the Holocene Rhine-Meuse Delta, the Netherlands. Sedimentary Geology, 145, 73–92

    Article  Google Scholar 

  • Thompson A., 1986. Secondry flows and pool-riffle units: A case study of the processes of meander development. Earth Surface Process and Landforms, 11, 631–641

    Article  Google Scholar 

  • Tinkler K.J., 1970. Pools, riffles and meanders. Bulletin of the Geological Society of America, 81, 547–552

    Article  Google Scholar 

  • Tison L.J., 1948. Etude des conditions dans lesquelles les particules solides sont transportees dans les courants a lit mobiles, Proc., Assoc. Intern. Sci. Hydro., Assemblee Generale d’Oslo, Tome 1, 293–310

    Google Scholar 

  • Wan Z. and Wang Z.Y., 1994. Hyperconcentrated flow, monograph series of IAHR. A.A. Balkema Publishers, Rotterdam, the Netherlands

    Google Scholar 

  • Wang Z.Y., 1987. Buoyancy force in solid-liquid mixtures. Proceedings, 22nd Congress. of IAHR, Lausanne, Switzerland

    Google Scholar 

  • Wang Z.Y. and Qian N., 1985. A preliminary investigation on the mechanism of hyperconcentrated flow. Proc. of Intern. Workshop on Flow at Hyperconcentration of Sediment, IRTCESPublication, II4-1-16

    Google Scholar 

  • Wang Z.Y., 1999. Experimental study on scour rate and channel bed inertia. Journal of Hydraulic Research, 37(1), 27–47

    Article  CAS  Google Scholar 

  • Wang Z.Y., 2002. Free surface instability of non-Newtonian laminar flows. Journal of Hydraulic Research. 40(4), 449–460

    Article  Google Scholar 

  • Wang Z.Y. and Dittrich A., 1992. A study on problems in suspended sediment transportation, Proceedings, 2nd International Conference on Hydraulics and Environmental Modelling of Coastal. Estuarine and River Waters, Ashgate, England, 467–478

    Google Scholar 

  • Wang Z.Y., Larsen P. and Xiang W., 1994. Rheological properties of sediment suspensions and their implications. Journal of Hydraulic Research, 32(4), 495–516

    Article  Google Scholar 

  • Wang Z.Y., Larsen P., Nestmann F. and Dittrich A., 1998. Resistance and drag reduction of hyperconcentrated flows over rough boundaries. Journal of Hydraulic Engineering, ASCE, 121(1), 1–9

    Article  Google Scholar 

  • Wang Z.Y. and Wu Y.S., 2001. Sediment-removing capacity and river motion dynamics. International Journal of Sediment Research

    Google Scholar 

  • Wang Z.Y., Huang J.C. and Su D.H., 1997. Scour rate formula. International Journal of Sediment Research, 12(3), 11–20

    CAS  Google Scholar 

  • Wanielista M., 1990, Hydrology and Water Quality Control. John and Wiley, New York. Water Resources and Power Press, 1–41

    Google Scholar 

  • White S.J.,1970. Plain bed thresholds for fine grained sediments. Nature, 228, (5267), 152–153

    Article  CAS  Google Scholar 

  • WIHEE (Wuhan Institute of Hydraulic and Electric Engineerig), Hydraulics. Hydraulic and Electric Press, 1961, (in Chinese)

    Google Scholar 

  • Xu J.X., 1996. Wandering braided river channel pattern developed under quasi-equilibrium: An example from the Hanjiang River, China. Journal of Hydrology, 181, 85–103

    Article  Google Scholar 

  • Yu G.A., Wang Z.Y., Zhang K. and Liu L., 2009. Impact of bed structure on bed load transport in a mountain stream. International Journal of Sediment Research, vol. 25 (in press)

    Google Scholar 

  • Zhao A. and Ru Y., 1994. Causes of the development of narrow and deep channel in the lower Weihe River. People’s Yellow River, (3), 1–4 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, ZY., Lee, J.H.W., Melching, C.S. (2015). Sediment Movement in Alluvial Rivers. In: River Dynamics and Integrated River Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25652-3_6

Download citation

Publish with us

Policies and ethics