Skip to main content

Radiation Therapy Using High-Energy Carbon Beams

  • Chapter
  • First Online:
Atomic Processes in Basic and Applied Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 68))

  • 1343 Accesses

Abstract

Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frameworks for heavy-ion radiotherapy are established using an understanding of radiation physics. In this chapter, the biophysical and medical physics aspects of heavy-ion radiotherapy are presented. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. A calorimeter was developed to measure the absolute dose of the heavy-ion beams. From a comparison of the dosimetry, it was found that the dose indicated by the ionization chamber was underestimated by 3–4%. The clinical results of carbon therapy at heavy-ion medical accelerator in Chiba (HIMAC) are assessed using the linear-quadratic (LQ) model of radiation effect. Development of new scintillation and Rossi counters will allow simultaneous measurement of the radiation dose and quality of heavy-ion beams. Further research is required to provide a comprehensive biophysical model for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Hornsey, Radiology 97, 649 (1970)

    Google Scholar 

  2. J.F. Fowler, F. Inst, P.J. Denekamp, A.L. Page, A.C. Begg, Br. J. Radiol. 45, 237 (1972)

    Google Scholar 

  3. J.W. Hopewell, W.H. Barnes, M.E.C. Robbins, M. Corp, J.M. Sansom, C.M.A. Young, G. Wiernik, Br. J. Radiol. 63, 760 (1990)

    Google Scholar 

  4. R.R. Wilson, Radiology 47, 487 (1946)

    Google Scholar 

  5. C.A. Tobias, H.O. Anger, J.H. Lawrence, Am. J. Roentgen. Radiat. Ther. Nucl. Med. 67, 1 (1952)

    Google Scholar 

  6. M.C. Pirruccello, C.A. Tobias (eds.), Biological and Medical Research with Accelerated Heavy Ions at the Bevalac, 1977–1980 LBL-11220/UC-48 (1980)

    Google Scholar 

  7. E.A. Blakely, F.Q.H. NGO, S.B. Curtis and C.A. Tobias. Advances in Radiat. Biol., 11, 295 (1984)

    Google Scholar 

  8. J.R. Castro, M.M. Reimers, Int. J. Radiat. Oncol. Biol. Phys. 14, 711 (1988)

    Google Scholar 

  9. T. Kanai, M. Endo, S. Minohara, et al., Int. J. Radiat. Oncol. Biol. Phys. 44, 201 (1999)

    Google Scholar 

  10. G. Kraft, Nucl. Instrum. Meth. A 454, 1 (2000)

    Google Scholar 

  11. J. Debus, T. Haberer, D. Schultz-Ertner, Strahlenther Onkol. 176, 211 (2000)

    Google Scholar 

  12. H. Tsujii, T. Kamada, M. Baba M, H. Tsuji, H. Kato, S. Kato, S. Yamada, S. Yasuda, T. Yanagi, H. Kato, R. Hara, N. Yamamoto, J. Mizoe, New J. Phys. 10, 075009 doi:10.1088/1367-2630/10/7/075009 (2008)

    Google Scholar 

  13. S. Minohara, T. Kanai, M. Endo: Int. J. Radiat. Oncol. Biol. Phys. 47, 1097 (2000)

    Google Scholar 

  14. T.H. Haberer, W. Becher, D. Schardt, G. Kraft, Nucl. Instrum. Meth. A 330, 296 (1993)

    Google Scholar 

  15. T. Furukawa, T. Inaniwa, S. Sato, T. Tomitani, S. Minohara, K. Noda, T. Kanai, Med. Phys. 34, 1085 (2007)

    Google Scholar 

  16. E. Rietzel, C. Bert, Med. Phys. 37, 449 (2010)

    Google Scholar 

  17. M. Scholz, G. Kraft, Adv. Space Res. 18, 5 (1996)

    Google Scholar 

  18. L. Sihver, C.H. Tsao, R. Silverberg, T. Kanai, A.F. Barghouty, Phys. Rev. C 47, 1455 (1993)

    Google Scholar 

  19. N. Matsufuji, M. Komori, H. Sasaki et al., Phys. Med. Biol. 50, 3393 (2005)

    Google Scholar 

  20. Z. Moliere, Naturforsch 2a, 133 (1947)

    Google Scholar 

  21. V.L. Highland, Nucl. Instrum. Meth. 129, 497 (1975)

    Google Scholar 

  22. Y. Kusano, T. Kanai, Y. Kase et al., Med. Phys. 34, 193 (2007)

    Google Scholar 

  23. Y. Kusano, T. Kanai et al., Med. Phys. 34, 4016 (2007)

    Google Scholar 

  24. H. Nose, Y. Kase, N. Matsufuji, et al., Med. Phys. 36, 870 (2009)

    Google Scholar 

  25. T. Inaniwa, T. Furukawa, A. Nagano, S. Sato, N. Saotome, K. Noda, T. Kanai, Med. Phys. 36, 2897 (2009)

    Google Scholar 

  26. I. Gudowska, N. Sobolevsky, P. Andreo et al., Phys. Med. Biol. 49, 1933 (2004)

    Google Scholar 

  27. A. Fasso, A. Ferrari, J. Ranft et al., Preprint CERN-2005–10 (2005)

    Google Scholar 

  28. J. Allison, K. Amako, IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Google Scholar 

  29. K. Niita, T. Sato, H. Iwase et al., Rad. Meas. 41, 1080 (2006)

    Google Scholar 

  30. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy. Technical Report Series No. 398 (IAEA, Vienna, 2000)

    Google Scholar 

  31. A. Fukumura, T. Hiraoka, K. Omata, M. Takeshita, K. Kawachi, K. Kanai, N. Matsufuji, H. Tomura, Y. Futami, Y. Kaizuka, G.H. Hartmann, Phys. Med. Biol. 43, 3459–3463 (1998)

    Google Scholar 

  32. G.H. Hartmann, O. Jäkel, P. Heeg, C.P. Karger, A. Kriessbach, Phys. Med. Biol. 44, 1193 (1999)

    Google Scholar 

  33. International Commission on Radiation Units and Measurements. Stopping Powers and Ranges for Protons and Alpha Particles. ICRU Report, 49 (Oxford University Press, London, 1993)

    Google Scholar 

  34. International Commission on Radiation Units and Measuremets. Stopping of Ions Heavier than Helium. ICRU Report, 73 (Oxford University Press, London, 2005)

    Google Scholar 

  35. P. Sigmund, A. Schinner, H. Paul, J. ICRU vol. 49 no. 1 (Oxford University Press, Oxford, 2009)

    Google Scholar 

  36. J.F. Ziegler, SRIM - the stopping and range of ions in matter (2008), Available at http://www.srim.org

  37. H. Paul, A. Schinner, MSTAR - stopping power for light ions (2004), Available at http://www.exphys.uni-lins.ac.at/stopping

  38. P. Andreo, Phys. Med. Biol. 54, N205 (2009)

    Google Scholar 

  39. H. Bichsel, T. Hiraoka, Nucl. Instrum. Meth. B 66, 345 (1992)

    Google Scholar 

  40. Y. Kumazaki, T. Akagi, T. Yanou, D. Suga, Y. Hishikawa, T. Teshima, Radiat. Meas. 42, 1683 (2007)

    Google Scholar 

  41. M. Dingfelder, D. Hantke, M. Inokuti, H.G. Paretzke, Electron inelastic-scattering cross sections in liquid water. Radiat. Phys. Chem. 53, 1 (1998)

    Google Scholar 

  42. D. Emfietzoglou, R. Garcia-Molina, I. Kyriakou, I. Abril, H. Nikjoo, Phys. Med. Biol. 54, 3451 (2009)

    Google Scholar 

  43. L. Sihver, D. Schart, T. Kanai, Jpn. J. Med. Phys. 18, 1 (1998)

    Google Scholar 

  44. H. Paul, Nucl. Instrum. Meth. Phys. Res. B 225, 435 (2007)

    Google Scholar 

  45. O. Geithner, P. Andreo, N. Sobolevsky, G. Hartmann, O. Jäkel, Phys. Med. Biol. 51, 2279 (2006)

    Google Scholar 

  46. H. Paul, O. Geithner, O. Jäkel, Adv. Quant. Chem. 52, 289 (2007)

    Google Scholar 

  47. K. Henkner, N. Bassler, N. Sobolevsky, O. Jäkel, Med. Phys. 36, 1230 (2009)

    Google Scholar 

  48. H.J. Brede, K.D. Greif, O. Hecker et al., Phys. Med. Biol. 51, 3667 (2006)

    Google Scholar 

  49. M. Sakama, T. Kanai, A. Fukumura, K. Abe, Phys. Med. Biol. 54, 1111 (2008)

    Google Scholar 

  50. M. Sudou, T. Kanai, in Test of SEC. Proceedings of the 9th Symposium on Accellerator, Science and Technology (1993), pp. 351–353

    Google Scholar 

  51. U. Schneider, E. Pedroni, A. Lomax, Phys. Med. Biol. 41, 111 (1996)

    Google Scholar 

  52. N. Matsufuji, H. Tomura, Y. Futami, H. Yamashita, A. Higashi, S. Minohara, M. Endo, T. Kanai, Phys. Med. Biol. 43, 3261 (1998)

    Google Scholar 

  53. T. Kanai, Y. Furusawa, K. Fukutsu et al., Radiat. Res. 147, 78 (1997)

    Google Scholar 

  54. T. Elsässer, M. Scholz, Radiat. Res. 167, 319 (2007)

    Google Scholar 

  55. T. Elsässer, M. Krämer, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 71, 866 (2008)

    Google Scholar 

  56. T. Kanai, N. Matsufuji, T. Miyamoto et al., Int. J. Radiat. Oncol. Biol. Phys. 64, 650 (2006)

    Google Scholar 

  57. J. Llacer, C.A. Tobias, W.R. Holley, T. Kanai, Med. Phys. 11, 266 (1984)

    Google Scholar 

  58. I. Schall, D. Schardt, H. Geissel, H. Irnich, E. Kankeleit, G. Kraft, A. Magel, M.F. Mohar, G. Muenzenberg, F. Nickel, C. Scheidenberger, W. Schwab, Nucl. Instrum. Meth. Phys. Res. B 117, 221 (1996)

    Google Scholar 

  59. N. Matsufuji, A. Fukumura, M. Komori, T. Kanai, T. Kohno, Phys. Med. Biol. 48, 1605 (2003)

    Google Scholar 

  60. Y. Kase, N. Kanematsu, T. Kanai, N. Matsufuji, Phys. Med. Biol. 51, N467 (2006)

    Google Scholar 

  61. A.M. Kellerer, H.H. Rossi, Curr. Top. Radiat. Res. Q8, 85 (1972)

    Google Scholar 

  62. R.B. Hawkins, Radiat. Res. 140, 366 (1994)

    Google Scholar 

  63. Y. Kase, T. Kanai, Y. Matsumoto et al., Radiat. Res. 166, 629 (2006)

    Google Scholar 

  64. Y. Kase, T. Kanai, M. Sakama, Y. Tameshige, T. Himukai, H. Nose, N. Matsufuji, Microdosimetric approach to NIRS-defined biological dose measurements for carbon-ion treatment beam. J. Radiat. Res. 52, 59 (2011)

    Google Scholar 

  65. Y. Kase, T. Kanai, N. Matsufuji, Y. Furusawa, T. Elsässer, M. Scholz, Phys. Med. Biol. 53, 37 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanai, T. (2012). Radiation Therapy Using High-Energy Carbon Beams. In: Shevelko, V., Tawara, H. (eds) Atomic Processes in Basic and Applied Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25569-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25569-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25568-7

  • Online ISBN: 978-3-642-25569-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics