Skip to main content

On the Effect of Connectedness for Biobjective Multiple and Long Path Problems

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

  • 5095 Accesses

Abstract

Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization. Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, ideally a representative sample of efficient solutions. In this paper, we propose the biobjective long and multiple path problems. We show experimentally that, on the first problem, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problem, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of multiobjective local search algorithms. This work opens new discussions on a proper definition of multiobjective fitness landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, J., Goldberg, D., Deb, K.: Long path problems. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Rudolph, G.: How mutation and selection solve long path problems in polynomial expected time. Evolutionary Computation 4(2), 195–205 (1996)

    Article  Google Scholar 

  3. Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple objective combinatorial optimization. Technical Report 102/2006, University of Kaiserslautern, Department of Mathematics (2006)

    Google Scholar 

  4. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria combinatorial optimization. European Journal of Operational Research 97(1), 159–166 (1997)

    Article  MATH  Google Scholar 

  5. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis. In: Multiobjective Programming and Goal Programming. LNEMS, vol. 618, pp. 69–77. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Metaheuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp. 177–199. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing: an International Journal 3(1), 37–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  10. Serafini, P.: Some considerations about computational complexity for multiobjective combinatorial problems. In: Recent Advances and Historical Development of Vector Optimization. LNEMS, vol. 294. Springer, Heidelberg (1986)

    Google Scholar 

  11. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Horoba, C., Neumann, F.: Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. In: Tenth Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 79–86. ACM, New York (2009)

    Chapter  Google Scholar 

  13. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation 14(1), 58–79 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verel, S., Liefooghe, A., Humeau, J., Jourdan, L., Dhaenens, C. (2011). On the Effect of Connectedness for Biobjective Multiple and Long Path Problems. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics