Skip to main content

Atomic Force Microscopy of Isolated Nanostructures: Biomolecular Imaging in Hydrated Environments – Status and Future Prospects

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Part of the book series: NanoScience and Technology ((NANO))

  • 2403 Accesses

Abstract

The use of the atomic force microscope (AFM) in ambient conditions has some key advantages for characterising isolated nanostructures over other operating environments. The lack of a bulk liquid environment minimises motion of the sample to maximise resolution, while humidity control allows retention of surface water, keeping biomolecules sufficiently hydrated. The use of relatively stiff cantilevers in air (k > 10 N/m) prevents significant energy being transferred to higher modes or frequencies. This enables reliable modelling of the cantilever dynamics with relatively straightforward point mass and spring models. We show herein that combining modelling with experiment leads to robust interpretation of dynamic AFM in air. This understanding has led to new ways of operation, including a true non-contact mode in ambient and small amplitude small set-point (SASS) modes. These modes will be important to gain quantitative information about structure and processes on the nanoscale. We also discuss interpretation of height information obtained from AFM on the nanoscale and summarise a framework for recovery of apparent height loss for nanostructures. A combination of these methods will lead to a new era of quantitative AFM for nanoscience and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  2. R. Garcia, R. Perez, Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Google Scholar 

  3. A. Alessandrini, P. Facci, AFM: A versatile tool in biophysics. Meas. Sci. Technol. 16, R65–R92 (2005)

    Google Scholar 

  4. H.G. Hansma, J.H. Hoh, Biomolecular imaging with the atomic force microscope. Ann. Rev. Biophys. Biomol. Struct. 23, 115–140 (1994)

    Google Scholar 

  5. N.H. Thomson et al., Protein tracking and detection of protein motion using atomic force microscopy. Biophys. J. 70, 2421–2431 (1996)

    Google Scholar 

  6. B. Drake et al., Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586 (1989)

    Google Scholar 

  7. P.K. Hansma et al., Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740 (1994)

    Google Scholar 

  8. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)

    Google Scholar 

  9. T. Ushiki, J. Hitomi, S. Ogura, T. Umemoto, M. Shigeno, Atomic force microscopy in histology and cytology. Arch. Histol. Cytol. 59, 421–431 (1996)

    Google Scholar 

  10. C.F. Quate, The AFM as a tool for surface imaging. Surf. Sci. 299–300, 980–995 (1994)

    Google Scholar 

  11. N. Kodera, D. Yamamoto, R. Ishikawa, T. Ando, Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010)

    Google Scholar 

  12. C. Bustamante, D. Keller, Scanning force microscopy in biology. Phys. Today 48, 33–38 (1995)

    Google Scholar 

  13. P. Parot et al., Past, present and future of atomic force microscopy in life sciences and medicine. J. Mol. Recognit. 20, 418–431 (2007)

    Google Scholar 

  14. S. Santos, N.H. Thomson, High Resolution Imaging of Immunoglobulin G (IgG) Antibodies and Other Biomolecules Using Amplitude Modulation Atomic Force Microscopy in Air (Humana Press, New York, 2011), pp. 61–79

    Google Scholar 

  15. L.W. Francis, P.D. Lewis, C.J. Wright, R.S. Conlan, Atomic force microscopy comes of age. Biol. Cell 102, 133–143 (2010)

    Google Scholar 

  16. C. Gerber, H.P. Lang, How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006)

    Google Scholar 

  17. R. Garcia, R. Magerele, R. Perez, Nanoscale compositional mapping with gentle forces. Nat. Mater. 6, 405–411 (2007)

    Google Scholar 

  18. G. Binnig, H. Rohrer, Scanning Tunneling Microscopy (European Physical Society, The Hague, 1984), pp. 38–46

    Google Scholar 

  19. S. Gould et al., Molecular resolution images of amino acid crystals with the atomic force microscope. Nature 332, 332–334 (1988)

    Google Scholar 

  20. C. Clemmer, T.P.J. Beebe, Graphite: A mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251, 640–642 (1991)

    Google Scholar 

  21. S.-M. Lim, A. Trache, Integrated microscopy for real-time imaging of mechanotransduction studies in live cells. J. Biomed. Opt. 14, 034024 (2009)

    Google Scholar 

  22. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)

    Google Scholar 

  23. K.C. Neuman, A. Nagy, Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008)

    Google Scholar 

  24. A. French, Vibrations and Waves (Thomas Nelson and Sons Ltd, New York, 1981)

    Google Scholar 

  25. R. Stark, W. Heckl, Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111–5114 (2003)

    Google Scholar 

  26. S. Santos, Dynamic atomic force microscopy and applications in biomolecular imaging. Ph.D. thesis, University of Leeds, 2011

    Google Scholar 

  27. T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991)

    Google Scholar 

  28. Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723–4729 (1987)

    Google Scholar 

  29. Q. Zhong, D. Innlss, K. Kjoller, V.B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692 (1993)

    Google Scholar 

  30. J. Tamayo, R. Garcia, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12, 4430–4435 (1996)

    Google Scholar 

  31. A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht, C.F. Quate, Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54, 2651–2653 (1989)

    Google Scholar 

  32. T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, True molecular resolution in liquid by frequency modulation atomic force microscopy. Appl. Phys. Lett. 86, 193108–193110 (2005)

    Google Scholar 

  33. F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Google Scholar 

  34. L. Gross et al., Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010)

    Google Scholar 

  35. D. Anselmetti et al., Attractive-mode imaging of biological materials with dynamic force microscopy. Nanotechnology 5, 87–94 (1994)

    Google Scholar 

  36. R. Pérez, I. Štich, M.C. Payne, K. Terakura, Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111). Phys. Rev. B 58, 10835–10849 (1998)

    Google Scholar 

  37. R. Boisgard., D. Michel, J.P. Aime, Hysteresis generated by attractive interaction: Oscillating behavior of a vibrating tip-microlever system near a surface. Surf. Sci. 401, 199–205 (1998)

    Google Scholar 

  38. R. Garcia, A. San Paulo, Attractive and repulsive tip-sample interaction regimes in tapping mode atomic force microscopy. Phys. Rev. B 60, 4961–4967 (1999)

    Google Scholar 

  39. X. Chen et al., Optimizing phase imaging via dynamic force curves. Surf. Sci. 460, 292–300 (2000)

    Google Scholar 

  40. B. Anczykowski, D. Krüger, H. Fuchs, Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. Phys. Rev. B 53, 15485–15488 (1996)

    Google Scholar 

  41. A. San Paulo, R. Garcia, High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repulsive tip-sample interaction regimes. Biophys. J. 78, 1599–1605 (2000)

    Google Scholar 

  42. R. Stark, G. Schitter, A. Stemmer, Tuning the interactions forces in tapping mode atomic force microscopy. Phys. Rev. B 68, 0854011–0854015 (2003)

    Google Scholar 

  43. F. Ostendorf et al., Evidence for potassium carbonate crystallites on air-cleaved mica surfaces. Langmuir 25, 10764–10767 (2009)

    Google Scholar 

  44. S. Santos, D.J. Billingsley, W.A. Bonass, N.H. Thomson, The double-helix of single DNA molecules. Unpublished (2010)

    Google Scholar 

  45. A. Ikai, Nanobiomechanics of proteins and biomembrane. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2163–2171 (2008)

    Google Scholar 

  46. R.D. Turner, J. Kirkham, D. Devine, N.H. Thomson, Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria. Appl. Phys. Lett. 94, 043901 (2009)

    Google Scholar 

  47. R.W. Stark, Spectroscopy of higher harmonics in dynamic atomic force microscopy. Nanotechnology 15, 347–351 (2004)

    Google Scholar 

  48. S. Patil, N.F. Martinez, J.R. Lozano, R. Garcia, Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J. Mol. Recognit. 20, 516–523 (2007)

    Google Scholar 

  49. R. Proksch, Multi-frequency, repulsive mode amplitude modulated atomic force microscopy. Appl. Phys. Lett. 89, 113121–113123 (2006)

    Google Scholar 

  50. X. Xu, J. Melcher, S. Basak, R. Reifenberger, A. Raman, Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. Phys. Rev. Lett. 102, 060801–060804 (2009)

    Google Scholar 

  51. J. Melcher et al., Origins of phase contrast in the atomic force microscope in liquids. PNAS 106, 13655–13660 (2009)

    Google Scholar 

  52. D. Kiracofe, A. Raman, On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids. J. Appl. Phys. 107, 033506–033515 (2010)

    Google Scholar 

  53. X. Xu, J. Melcher, A. Raman, Accurate force spectroscopy in tapping mode atomic force microscopy in liquids. Phys. Rev. B 81, 035407–035414 (2010)

    Google Scholar 

  54. G. Bar, Y. Thomann, R. Brandsch, H.J. Cantow, Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-costyrene) and poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 13, 3807–3812 (1997)

    Google Scholar 

  55. J. Tamayo, R. Garcia, Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 71, 2394–2396 (1997)

    Google Scholar 

  56. J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings,. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998)

    Google Scholar 

  57. N. Martinez, R. Garcia, Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17, S167–S172 (2006)

    Google Scholar 

  58. R. Garcia et al., Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Phys. Rev. Lett. 97, 016103–016104 (2006)

    Google Scholar 

  59. C.J. Gomez, R. Garcia, Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. Ultramicroscopy 110, 626–633 (2010)

    Google Scholar 

  60. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007)

    Google Scholar 

  61. Y. Gan, Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 64, 99–121 (2009)

    Google Scholar 

  62. K. Voïtchovsky, J.J. Kuna, S. Antoranz Contera, E. Tosatti, F. Stellacci, Direct mapping of the solid–liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol. 5, 401–405 (2010)

    Google Scholar 

  63. S. Santos, V. Barcons, H.K. Christenson, N.H. Thomson, J. Font, The intrinsic resolution limit in the atomic force microscope: Implications for heights of nano-scale features. PLoS ONE 6, e23821 (2011)

    Google Scholar 

  64. S. Santos, M. Stefancich, M. Chiesa, H.N. Thomson, The hydrophilicity of a single DNA molecule. Submitted (2011)

    Google Scholar 

  65. S. Santos et al., How localised are energy dissipation processes in the nanoscale? Nanotechnology 22, 345401–345407 (2011)

    Google Scholar 

  66. S. Santos, N.H. Thomson, Energy dissipation in a dynamic nanoscale contact. Appl. Phys. Lett. 98, 013101–013103 (2011)

    Google Scholar 

  67. J.M. Drake, J. Klafter, Dynamics of confined molecular systems. Phys. Today 43, 43–45 (1990)

    Google Scholar 

  68. E. Meyer et al., Molecular-resolution images of Langmuir-Blodgett films using atomic force microscopy. Nature 349, 398–400 (1991)

    Google Scholar 

  69. M. Radmacher, R.W. Tillamnn, M. Fritz, H.E. Gaub, From molecules to cells: Imaging soft samples with the atomic force microscope. Science 257, 1900–1905 (1992)

    Google Scholar 

  70. F.J. Giessibl, Atomic resolution of the silicon (111)-(7 ×7) surface by atomic force microscopy. Science 267, 68–71 (1995)

    Google Scholar 

  71. S. Yasuhiro, M. Ohta, H. Ueyama, S. Morita, Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 270, 1646–1648 (1995)

    Google Scholar 

  72. L. Nony, R. Boisgard, J.P. Aimé, DNA properties investigated by dynamic force microscopy. Biomacromolecules 2, 827–835 (2001)

    Google Scholar 

  73. P. Hinterdorfer, Y.F. Dufrene, Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006)

    Google Scholar 

  74. R.W. Stark, Bistability, higher harmonics, and chaos in AFM. Mater. Today 13, 24–32 (2010)

    Google Scholar 

  75. S. Santos, V. Barcons, J. Font, N.H. Thomson, Cantilever dynamics in amplitude modulation AFM: Continuous and discontinuous transitions. J. Phys. D Appl. Phys. 43, 275401–275407 (2010)

    Google Scholar 

  76. S. Santos, V. Barcons, J. Font, N.H. Thomson, Bi-stability of amplitude modulation AFM in air: Deterministic and stochastic outcomes for imaging biomolecular systems. Nanotechnology 21, 225710–225720 (2010)

    Google Scholar 

  77. R. Garcia, Amplitude Modulation Atomic Force Microscopy (Wiley, Weinheim, 2010)

    Google Scholar 

  78. N. Hashemi, H. Dankowicz, M.R. Paul, The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interaction. J. Appl. Phys. 103, 093512–093518 (2008)

    Google Scholar 

  79. S. Basak, A. Raman, Dynamics of tapping mode atomic force microscopy in liquids: Theory and experiments. Appl. Phys. Lett. 91, 064107–064109 (2007)

    Google Scholar 

  80. A.S. Paulo, R. Garcia, Unifying theory of tapping-mode atomic force microscopy. Phys. Rev. B 66, 0414061–0414064 (2002)

    Google Scholar 

  81. R. Garcia, A. San Paulo, Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys. Rev. B 61, R13381–R13384 (2000)

    Google Scholar 

  82. L. Wang, The role of damping in phase imaging in tapping mode atomic force microscopy. Surf. Sci. 429, 178–185 (1999)

    Google Scholar 

  83. L. Nony, R. Boisgard, J.P. Aime, Nonlinear dynamical properties of an oscillating tip–cantilever system in the tapping mode. J. Chem. Phys. 111, 1615–1627 (1999)

    Google Scholar 

  84. M. Marth, D. Maier, J. Honerkamp, A unifying view on some experimental effects in tapping-mode atomic force microscopy. J. Appl. Phys. 85, 7030–7036 (1999)

    Google Scholar 

  85. H. Hölscher, U.D. Schwarz, R. Wiesendanger, Calculation of the frequency shift in dynamic force microscopy. Appl. Surf. Sci. 140, 344–351 (1999)

    Google Scholar 

  86. B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs, Conservative and dissipative tip-sample interaction forces probed with dynamic AFM. Phys. Rev. B 60, 11051–11061 (1999)

    Google Scholar 

  87. J.P. Aimé, R. Boisgard, L. Nony, G. Couturier, Nonlinear dynamic behavior of an oscillating tip-microlever system and contrast at the atomic scale. Phys. Rev. Lett. 82, 3388–3391 (1999)

    Google Scholar 

  88. F.J. Giessibl, Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997)

    Google Scholar 

  89. T. Rodriguez, R. Garcia, Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84, 449–551 (2004)

    Google Scholar 

  90. R. García, N.F. Martínez, C.J. Gómez, A. García-Martín, in Fundamentals of Friction and Wear, vol. 4, ed. by E. Gnecco, E. Meyer (Springer, New York, 2007), pp. 361–371

    Google Scholar 

  91. M.H. Whangbo, R. Brandsch, G. Bar, Description of phase imaging in tapping mode atomic force microscopy by harmonic approximation. Surf. Sci. 411, L794–L801 (1998)

    Google Scholar 

  92. M. Gauthier, R. Pérez, T. Arai, M. Tomitori, M. Tsukada, Interplay between nonlinearity, scan speed, damping, and electronics in frequency modulation atomic-force microscopy. Phys. Rev. Lett. 89, 146104 (2002)

    Google Scholar 

  93. F. Ostendorf et al., How flat is an air-cleaved mica surface? Nanotechnology 19, 305705 (2008)

    Google Scholar 

  94. M. Bezanilla, S. Manne, D.E. Laney, Y.L. Lyubchenko, H.G. Hansma, Adsorption of DNA to mica, silylated mica, and minerals: Characterization by atomic force microscopy. Langmuir 11, 655–659 (1995)

    Google Scholar 

  95. H. Hansma, D. Laney, DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophys. J. 70, 1933–1939 (1996)

    Google Scholar 

  96. S.M. Richardson, J.W. Richardson, Crystal structure of a pink muscoyite from Archer’s Post, Kenya: Implications for reverse pleochroism in dioctahedral micas. Am. Miner. 67, 69–75 (1982)

    Google Scholar 

  97. J. Vesenka et al., Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44, 1243–1249 (1992)

    Google Scholar 

  98. S. Santos, N.H. Thomson, High Resolution Imaging of Immunoglobulin G (IgG) Antibodies and Other Biomolecules Using Amplitude Modulation Atomic Force Microscopy in Air (Humana Press, New York, 2010)

    Google Scholar 

  99. J. Israelachvili, Intermolecular & Surface Forces, 2nd edn. (Academic, San Diego, 1991)

    Google Scholar 

  100. D. Voet, J. Voet, Biochemistry, 2nd edn. (Wiley, New York, 1995)

    Google Scholar 

  101. D.V. Klinov et al., High resolution atomic force microscopy of DNA. Biochemistry (Moscow) 74, 1150–1154 (2009)

    Google Scholar 

  102. M. Maaloum, A close encounter with DNA. Eur. Biophys. J. 32, 585–587 (2003)

    Google Scholar 

  103. T. Uchihashi et al., Identification of B-form DNA in an ultrahigh vacuum by noncontact-mode atomic force microscopy. Langmuir 16, 1349–1353 (2000)

    Google Scholar 

  104. Y. Maeda, T. Matsumoto, T. Kawai, Observation of single- and double-stranded DNA using non-contact atomic force microscopy. Appl. Surf. Sci. 140, 400–405 (1999)

    Google Scholar 

  105. H.G. Hansma et al., Progress in sequencing deoxyribonucleic acid with an atomic force microscope. J. Vac. Sci. Technol. B 9, 1227–1230 (1991)

    Google Scholar 

  106. F. Kienbergera et al., Dynamic force microscopy imaging of plasmid DNA and viral RNA. Biomaterials 28, 2403–2411 (2007)

    Google Scholar 

  107. Y. Wu, J. Cai, L. Cheng, C. Wang, Y. Chen, Chromosome imaging by atomic force microscopy: influencing factors and comparative evaluation. J. Genet. 85, 141–145 (2006)

    Google Scholar 

  108. J. Tamayo, Structure of human chromosomes studied by atomic force microscopy. J. Struct. Biol. 141, 198–207 (2003)

    Google Scholar 

  109. D.J. Billingsley, J. Kirkham, W.A. Bonass, N.H. Thomson, Atomic force microscopy of DNA at high humidity: Irreversible conformational switching of supercoiled molecules. Phys. Chem. Chem. Phys. 12, 14727–14734 (2010)

    Google Scholar 

  110. D. Beaglehole, H.K. Christenson, Vapor adsorption on mica and silicon: Entropy effects, layering, and surface forces. J. Phys. Chem. 96, 3395–3403 (1992)

    Google Scholar 

  111. N.H. Thomson, Imaging the substructure of antibodies with tapping-mode AFM in air: The importance of a water layer on mica. J. Microsc. 217, 193–199 (2005)

    Google Scholar 

  112. W. Doster et al., in Protein-Water Interactions, vol. 1804, eds. by W. Doster, T. Gutberlet (Elsevier, Burlington 2010), pp. 1–242

    Google Scholar 

  113. L.A. Lipscomb et al., Water ring structure at DNA interfaces: Hydration and dynamics of DNA-anthracycline complexes. Biochemistry 33, 3649–3659 (1994)

    Google Scholar 

  114. M.S. Cheung, A.E. García, J.N. Onuchic, Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. 22, 685–690 (2002)

    Google Scholar 

  115. M.U. Hammer, T.H. Anderson, A. Chaimovich, M.S. Shell, J. Israelachvili, The search for the hydrophobic force law. Farad. Discuss. 146, 299–308 (2010)

    Google Scholar 

  116. S.C. Ha, K. Lowenhaupt, A. Rich, Y.G. Kim, K. Kim, Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437, 1183–1186 (2005)

    Google Scholar 

  117. A.D. Bates, A. Maxwell, DNA Topology. (Oxford University Press, Oxford, 2005)

    Google Scholar 

  118. A. Rich, S. Zhang, Timeline: Z-DNA: The long road to biological function. Nat. Rev. Genet. 4, 566–572 (2003)

    Google Scholar 

  119. J.G. Heddle, S. Mitelheiser, A. Maxwell, N.H. Thomson, Nucleotide binding to DNA gyrase causes loss of DNA wrap. J. Mol. Biol. 337, 597–610 (2004)

    Google Scholar 

  120. J. Martinez et al., Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam. Nanotechnology 16, 2493–2496 (2005)

    Google Scholar 

  121. R.J. Driscoll, G.M. Youngquist, D.J. Baldeschwieler, Atomic-scale imaging of DNA using scanning tunnelling microscopy. Nature 346, 294–296 (1990)

    Google Scholar 

  122. M. Amrein, R. Durr, A. Stasiak, H. Gross, G. Travaglini, Scanning tunneling microscopy of uncoated recA-DNA complexes. Science 243, 1708–1711 (1998)

    Google Scholar 

  123. R. Guckenberger et al., Imaging of uncoated purple membrane by scanning tunneling microscopy. J. Vac. Sci. Technol. B 9, 1227–1230 (1991)

    Google Scholar 

  124. J. Tamayo, R. Garcia, Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Appl. Phys. Lett. 73, 2926–2928 (1998)

    Google Scholar 

  125. Y. Chen, W. Huang, Automatic glitch elimination of scanning probe microscopy images. Anal. Sci. 27, 153 (2011)

    Google Scholar 

  126. P. Gleyzes, P.K. Kuo, A.C. Boccara, Bistable behavior of a vibrating tip near a solid surface. Appl. Phys. Lett. 58, 2989–2991 (1991)

    Google Scholar 

  127. L. Zitzler, S. Herminghaus, F. Mugele, Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66, 155436–155438 (2002)

    Google Scholar 

  128. J. Tamayo, Energy dissipation in tapping-mode scanning force microscopy with low quality factors. Appl. Phys. Lett. 75, 3569–3571 (1999)

    Google Scholar 

  129. T.R. Rodríguez, R. García, Tip motion in amplitude modulation tapping-mode atomic-force microscopy: Comparison between continuous and point-mass models. Appl. Phys. Lett. 80, 1646–1648 (2002)

    Google Scholar 

  130. R. Garcia, A. San Paulo, Amplitude curves and operating regimes in dynamic atomic force microscopy. Ultramicroscopy 82, 79–83 (2000)

    Google Scholar 

  131. A.S. Paulo, R. Garcia, Tip-surface, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys. Rev. B 64, 193411–193414 (2001)

    Google Scholar 

  132. N.H. Thomson, The substructure of immunoglobulin G resolved to 25 kDA using amplitude modulation in air. Ultramicroscopy 105, 103–110 (2005)

    Google Scholar 

  133. S. Santos, A. Verdaguer, T. Souier, N.H. Thomson, M. Chiesa, Measuring the true height of water layers in the nanoscale. Nanotechnology, Under review (2011)

    Google Scholar 

  134. A. Verdaguer, G.M. Sacha, H. Bluhm, M. Salmeron, The molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006)

    Google Scholar 

  135. H.K. Christenson, Adhesion and surface energy of mica in air and water. J. Phys. Chem. 97, 12034–12041 (1993)

    Google Scholar 

  136. A. Round, M. Miles, Exploring the consequences of attractive and repulsive interaction regimes in tapping mode atomic force microscopy of DNA. Nanotechnology 15, S176–183 (2004)

    Google Scholar 

  137. R.H. Abou-Saleh et al., Nanoscale probing reveals that reduced stiffness of clots from fibrinogen lacking 42 N-terminal Bβ-chain residues is due to the formation of abnormal oligomers. Biophys. J. 96, 2415–2427 (2009)

    Google Scholar 

  138. C.-W. Yang, I.-S. Hwang, Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy. Nanotechnology 21, 065710–065716 (2010)

    Google Scholar 

  139. B.V. Derjaguin, V. Muller, Y. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Google Scholar 

  140. T. Tatsuyama-Kurk, Visualising the surface of filamentous cyanobacteria with atomic force microscopy. Ph.D. thesis, University of Leeds, 2010

    Google Scholar 

  141. R.M. Brydson et al., Nanoscale Science and Technology (Wiley, Chichester, 2005)

    Google Scholar 

  142. L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)

    Google Scholar 

  143. F.C. Simmel, W.U. Dittmer, DNA nanodevices. Small 1, 284–299 (2005)

    Google Scholar 

  144. R. Feynman, The Pleasure of Finding Things Out, New edn. (Penguin Books Ltd, London, 2001)

    Google Scholar 

  145. R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, 2nd edn. Vol. 1 (Addison Wesley, Boston, 2005)

    Google Scholar 

  146. D.J. Müller, A. Engel, The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys. J. 73, 1633–1644 (1997)

    Google Scholar 

  147. F. Moreno-Herrero, J. Colchero, A. Baro, DNA height in atomic force microscopy. Ultramicroscopy 96, 167–174 (2003)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Matteo Chiesa and Marco Stefancich (Masdar Institute of Science and Technology) for their comments when developing this work and Maritsa Kissamitaki for helping with the artwork. We would also like to thank Dr. David Adams, Dr. Simon Connell and Dr. Toby Kurk for their contribution to this work (Oscillatoria A2 cyanobacterium, Fig. 5.12).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santos, S., Thomson, N.H. (2012). Atomic Force Microscopy of Isolated Nanostructures: Biomolecular Imaging in Hydrated Environments – Status and Future Prospects. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_5

Download citation

Publish with us

Policies and ethics