Skip to main content

Investigation of Nanopatterned Functional Polymer Surfaces by AFM in Pulsed Force Mode

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Part of the book series: NanoScience and Technology ((NANO))

  • 2393 Accesses

Abstract

Achieving topography and chemistry control at the nanoscale of polymer surfaces constitutes a highly challenging objective in nanotechnology. Advances in this field suppose the development of characterization methodology with sub-100-nm resolution. Many imaging techniques based on scanning probe microscopy (SPM) were recently developed to achieve this goal [1]. Among them, pulsed force mode (PFM) atomic force microscopy (AFM), which has been proposed firstly by Marti [2], is still a method of interest since this nonresonant mode designed to allow approach curves being recorded along the scanning path provides the topography of the sample and a direct and simple local characterization of adhesion and stiffness.This chapter is aimed at demonstrating the interest of this technique to investigate polymer surfaces patterned with photochemical methods. Both topography and chemical contrast at the sub-100-nm scale can be probed, which gives new insights into photoinduced processes at the nanoscale.After an introduction focusing on the main techniques used for the analysis of the chemical contrast at micro- and nanopatterned polymer surfaces, the first part will deal with the utility of AFM in the investigation of photopolymer surfaces.In the second part, the principle of PFM and its interest in polymer surface analysis will be detailed.The third part will focus on a recent application dealing with the nanopatterning of plasma polymer surfaces using DUV photolithography techniques. Analysis of interactions between the AFM tip and the polymer surface allows acquiring relevant information on the light-induced modifications at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bhushan, Measurement techniques and applications, in Handbook of Micro/Nano Tribology, ed. by B. Bhushan (CRC Press, London, 1999), p. 49

    Google Scholar 

  2. A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, Meas. Sci. Technol. 8, 1333–1338 (1997)

    Google Scholar 

  3. E. Selli, I.R. Bellobono, Photopolymerization of multifunctional monomers: Kinetic aspects, in Radiation Curing in Polymer Science and Technology, Polymerisation Mechanisms, Vol. III, ed. by J.P. Fouassier, J.F. Rabek, (Elsevier, London, 1993), p. 1–32

    Google Scholar 

  4. C. Decker, New developments in UV-curable acrylic monomers, in Radiation Curing in Polymer Science and Technology, Polymerisation Mechanisms, Vol. III, ed. by J.P. Fouassier, J.F. Rabek, (Elsevier, London, 1993), pp. 33–64

    Google Scholar 

  5. D.J. Lougnot, Photopolymers and holography, in Radiation Curing in Polymer Science and Technology, Polymerisation Mechanisms, Vol. III, ed. by J.P. Fouassier, J.F. Rabek, (Elsevier, London, 1993), pp. 65–100

    Google Scholar 

  6. F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, C. Carré, Opt. Express 15, 2234–2243 (2007)

    Google Scholar 

  7. C. Carré, P. Saint-Georges, C. Lenaerts, Y. Renotte, Synth. Met. 127(1–3), 291–294 (2002)

    Google Scholar 

  8. C. Croutxé-Barghorn, O. Soppera, D.J. Lougnot, Appl. Surf. Sci. 168, 89–91 (2000)

    Google Scholar 

  9. H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S. Grimault, G. Lérondel, J. Plain, P. Royer, O. Soppera, Phys. Rev. Lett. 98, 107402(1–4) (2007)

    Google Scholar 

  10. Y. Martin, H.K. Wickramasinghe, Appl. Phys. Lett. 64(19), 2498–2500 (1994)

    Google Scholar 

  11. N.A. Burnham, R.J. Colton, H.M. Pollock, Nanotechnology 4, 64–80 (1993)

    Google Scholar 

  12. J.P. Aime, Z. Elkaakour, C. Odin, T. Bouhacina, D. Michel, J. Curely, A. Dautant, J. Appl. Phys. 77, 754–762 (1994)

    Google Scholar 

  13. O.K.C. Tsui, X.P. Wang, J.Y.L. Ho, X. Xiao, Macromolecules 33, 4198–4204 (2000)

    Google Scholar 

  14. X.P. Wang, X. Xiao, O.K.C. Tsui, Macromolecules 34(12), 4180–4185 (2001)

    Google Scholar 

  15. B. Cappella, S.K. Kaliappan, H. Sturm, Macromolecules 38, 1874–1881 (2005)

    Google Scholar 

  16. P.J. Eaton, P. Graham, J.R. Smith, J.D. Smart, T.G. Nevell, J. Tsibouklis, Langmuir 16(21), 7887–7890 (2000)

    Google Scholar 

  17. K.G. Yager, C.J. Barrett, Macromolecules 39(26), 9320–9326 (2006)

    Google Scholar 

  18. http://www/witec.com

  19. M. Csete, N. Kresz, C. Vass, G. Kurdi, Z. Heiner, M. Deli, Z. Bor, O. Marti, Mat. Sci. Eng. C 25, 813–819 (2005)

    Google Scholar 

  20. M. Csete, J. Kokavecz, Z. Bor, O. Marti, Mat. Sci. Eng. C 23, 939–944 (2003)

    Google Scholar 

  21. O. Soppera, M. Feuillade, C. Croutxé-Barghorn, C. Carré, Prog. Solid State Chem. 34(2–4), 87–94 (2006)

    Google Scholar 

  22. C.A. Rezende, L.-T. Lee, F. Galembeck, Langmuir 25(17), 9938–9946 (2009)

    Google Scholar 

  23. C. Zhao, M. Burchardt, T. Brinkhoff, C. Beardsley, M. Simon, G. Wittstock, Langmuir 26(11), 8641–8647 (2010)

    Google Scholar 

  24. K. Deng, M.A. Winnik, N. Yan, Z. Jiang, P.V. Yaneff, R.A. Ryntz, Polymer 50, 3225–3233 (2009)

    Google Scholar 

  25. C.T. Gibson, G.S. Watson, S. Myhra, Scanning 19, 564 (1997)

    Google Scholar 

  26. F. Iwata, T. Matsumoto, A. Sasaki, Nanotechnology 11, 10 (2000)

    Google Scholar 

  27. Y. Defosse, C. Carré, D.J. Lougnot, Pure Appl. Opt. 2, 437–440 (1993)

    Google Scholar 

  28. C. Carré, P. Saint-Georges, G. Pauliat, Proc. SPIE 5464, 345–350 (2004)

    Google Scholar 

  29. S. Jradi, C. Croutxé-Barghorn, C. Carré, Proc. SPIE 5827, 410–417 (2005)

    Google Scholar 

  30. O. Soppera, S. Jradi, D.J. Lougnot, J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008)

    Google Scholar 

  31. O. Soppera, S. Jradi, C. Ecoffet, D.J. Lougnot, Nanoengineering: Fabrication, properties, optics and devices IV, Proc. SPIE 6647, 6647OI (2007)

    Google Scholar 

  32. C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, O. Soppera, J. Am. Chem. Soc. 133(27), 10535–10542 (2011)

    Google Scholar 

  33. C. Deeb, R. Bachelot, J. Plain, A.L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L.B. Huang, C. Ecoffet, L. Balan, P. Royer, ACS Nano 4(8), 4579–4586 (2010)

    Google Scholar 

  34. S. Jradi, O. Soppera, D.J. Lougnot, J. Microscopy 229(1), 151–161 (2008)

    Google Scholar 

  35. J.E. Dietz, N.A. Peppas, Polymer 38(15), 3767–3781 (1997)

    Google Scholar 

  36. R.L. Bowen, J. Am. Dent. Assoc. 66, 57–64 (1963)

    Google Scholar 

  37. M. Braem, P. Lambrechts, G. Vanherle, C.L. Davidson, J. Dent. Res. 66, 1713–1716 (1987)

    Google Scholar 

  38. B.S. Dauvillier, A.J. Feilzer, A.J. De Gee, C.L. Davidson, J. Dent. Res. 79, 818–823 (2000)

    Google Scholar 

  39. H.V. Boening, Fundamental of Plasma Chemistry and Technology, (Technomic Publishing Company, Inc., Lancaster, 1988), p. 75; H. Yasuda, Plasma Polymerization, (Academic, London, 1985)

    Google Scholar 

  40. V. Roucoules, A. Ponche, F. Siffer, U. Ergurrolla, M.F. Vallat, J. Adhes. 83, 875–895 (2007)

    Google Scholar 

  41. D.O.H. Teare, C. Spanos, P. Ridley, E.J. Kinmond, V. Roucoules, J.P.S. Badyal, Chem. Mater. 14, 4566–4571 (2002)

    Google Scholar 

  42. H. Yasuda, Y. Matsuzawa, Plasma Process. Polym. 2, 507–512 (2005)

    Google Scholar 

  43. O. Soppera, A. Dirani, A. Ponche, V. Roucoules, Nanotechnology 19, 395304–395312 (2008)

    Google Scholar 

  44. A. Geissler, M.F. Vallat, L. Vidal, J.C. Voegel, J. Hemmerlé, P. Schaaf, V. Roucoules, Langmuir 24, 4874–4880 (2008)

    Google Scholar 

  45. A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht, C.F. Quate, Appl. Phys. Lett. 54(26), 2651–2653 (1989)

    Google Scholar 

  46. S. Sakrani, L.Q. Jie, Y.J. Wahab, Fund. Sci. 1(1), 23–33 (2005)

    Google Scholar 

  47. M. Paajanen, J. Katainen, O.H. Pakarimen, A.S. Foster, J.J. Lahtinen, Coll. Int. Sci. 304, 518–523 (2006)

    Google Scholar 

  48. S. Biggs, P.J. Mulvaney, Chem. Phys. 100(11), 8501–8505 (1994)

    Google Scholar 

  49. T. Eastman, D.M. Zhu, Langmuir 12, 2859–2862 (1996)

    Google Scholar 

  50. Y.I. Rabinovich, M.S. Esayanur, B.M. Moudgil, Langmuir 21, 10992–10997 (2005)

    Google Scholar 

  51. D.A. Grigg, P.E. Russell, Vac. Sci. Technol. A 10(4), 680–683 (1992)

    Google Scholar 

  52. A. Noy, D.V. Vezenov, C.M. Lieber, Annu. Rev. Mater. Sci. 27, 381–421 (1997)

    Google Scholar 

  53. Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, J. Lightwave Technol. 17(11) 2361 (1999)

    Google Scholar 

  54. A. Dirani, F. Wieder, V. Roucoules, A. Airoudj, O. Soppera, Plasma Process. Polym. 7, 571–581 (2010)

    Google Scholar 

  55. F. Siffer, A. Ponche, P. Fioux, J. Schultz, V. Roucoules, Anal. Chim. Acta. 539, 289–299 (2005)

    Google Scholar 

  56. K. Mougin, H. Haidara, Europhys. Lett. 61(5), 660–666 (2003)

    Google Scholar 

  57. O. Soppera, S. Jradi, D.J. Lougnot, in AdvancedTechniquesand Applications on Scanning Probe Microscopy, ed. by J.-L. Bubendorff, F. Lei, (2008), pp. 119–140, Applied Physics Review Books, Research Signpost, ISBN 9788178953786

    Google Scholar 

  58. A. Dirani, V. Roucoules, H. Haidara, O. Soppera, Langmuir 26, 17532–17539 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soppera, O., Dirani, A., Jradi, S., Roucoules, V., Haidara, H. (2012). Investigation of Nanopatterned Functional Polymer Surfaces by AFM in Pulsed Force Mode. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_11

Download citation

Publish with us

Policies and ethics