Skip to main content

Discretization of Solution Operators for Linear Time Invariant - Time Delay Systems in Hilbert Spaces

  • Chapter
  • First Online:
Time Delay Systems: Methods, Applications and New Trends

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 423))

  • 2047 Accesses

Abstract

In this paper a numerical scheme to discretize the solution operators of linear time invariant - time delay systems is proposed and analyzed. Following previous work of the authors on the classic state space of continuous functions, here the focus is on working in product Hilbert state spaces. The method is based on a combination of collocation and Fourier projection. Full discretization details for constructing the approximation matrices are given for the sake of implementation. Moreover, convergence results are proved and discussed, with particular attention to their pros and cons with regards to fundamental targets such as time-integration and detection of asymptotic stability of equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batkai, A., Piazzera, S.: Semigroups for delay equations. Number 10 in Research Notes in Mathematics. A K Peters Ltd., Canada (2005)

    Google Scholar 

  2. Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. Numerical Mathemathics and Scientifing Computing Series. Oxford University Press (2003)

    Google Scholar 

  3. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and control of infinite dimensional systems, vol. I, II. Birkhäuser (1992, 1993)

    Google Scholar 

  4. Borisovič, J.G., Turbabin, A.S.: On the Cauchy problem for linear nonhomogeneous differential equations with retarded arguments. Dokl. Akad. Nauk SSSR 185(4), 741–744 (1969); English Transl. Soviet Math. Dokl. 10(2), 401-405 (1969)

    MathSciNet  Google Scholar 

  5. Breda, D.: Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents. Diff. Int. Equations 23(9-10), 935–956 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27(2), 482–495 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breda, D., Maset, S., Vermiglio, R.: On discretizing the semigroup of solution operators for linear time invariant - time delay systems. In: IFAC 2010 Proceedings of Time Delay Systems (2010) (in Press)

    Google Scholar 

  8. Breda, D., Maset, S., Vermiglio, R.: Approximation of eigenvalues of evolution operators for linear retarded functional differential equations (submitted, 2011)

    Google Scholar 

  9. Butcher, E.A., Ma, H.T., Bueler, E., Averina, V., Szabo, Z.: Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int. J. Numer. Meth. Engng. 59, 895–922 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation Series. Springer, Berlin (2007)

    Google Scholar 

  11. Delfour, M.C.: State theory of linear hereditary differential systems. J. Differ. Equations 60, 8–35 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Delfour, M.C., Mitter, S.K.: Hereditary differential systems with constant delays. I. General case. J. Differ. Equations 12, 213–235 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay Equations - Functional, Complex and Nonlinear Analysis. Number 110 in AMS series. Springer, New York (1995)

    Google Scholar 

  14. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Number 194 in Graduate texts in mathematics. Springer, New York (1999)

    Google Scholar 

  15. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM T. Math. Software 28(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engelborghs, K., Roose, D.: On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40(2), 629–650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farmer, D.: Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4, 605–617 (1982)

    Google Scholar 

  18. Hadd, S., Rhandi, A., Schnaubelt, R.: Feedback theory for time-varying regular linear systems with input and state delays. IMA J. Math. Control Inform. 25(1), 85–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hale, J.K.: Introduction to functional differential equations, 1st edn. Number 99 in AMS series. Springer, New York (1977)

    Google Scholar 

  20. Insperger, T., Stépán, G.: Semi-discretization method for delayed systems. Int. J. Numer. Meth. Engng 55, 503–518 (2002)

    Article  MATH  Google Scholar 

  21. Ito, K., Kappel, F.: A uniformly differentiable approximation scheme for delay systems using splines. Appl. Math. Opt. 23, 217–262 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kappel, F.: Semigroups and delay equations. Number 152 (Trieste, 1984) in Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1986)

    Google Scholar 

  23. Peichl, G.H.: A kind of “history space” for retarded functional differential equations and representation of solutions. Funkc. Ekvacioj-SER I 25, 245–256 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Verheyden, K., Luzyanina, T., Roose, D.: Efficient computation of characteristic roots of delay differential equations using LMS methods. J. Comput. Appl. Math. 214(1), 209–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vinter, R.B.: On the evolution of the state of linear differential delay equations in M 2: properties of the generator. J. Inst. Maths. Applics. 21, 13–23 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vyhlídal, T., Zítek, P.: Mapping based algorithm for large-scale computation of quasi-polynomial zeros. IEEE T. Automat. Cont. 54(1), 171–177 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Breda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Breda, D., Maset, S., Vermiglio, R. (2012). Discretization of Solution Operators for Linear Time Invariant - Time Delay Systems in Hilbert Spaces. In: Sipahi, R., Vyhlídal, T., Niculescu, SI., Pepe, P. (eds) Time Delay Systems: Methods, Applications and New Trends. Lecture Notes in Control and Information Sciences, vol 423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25221-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25221-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25220-4

  • Online ISBN: 978-3-642-25221-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics