Skip to main content

Zusammenfassung

Das aus dem Griechischen stammende Wort „Kachexie“ bedeutet wörtlich übersetzt „schlechter Zustand“. Zugrunde liegt ein gestörter Metabolismus, der mit einer Reduktion der Fett- und Muskelmasse einhergeht, die Lebensqualität von Krebspatienten stark einschränkt und deren Prognose erheblich verschlechtert. Es existiert keine einheitliche Definition einer Kachexie, was deren Klassifikation und Therapie erschwert. Der medizinische Dienst der Krankenversicherungen definiert die Kachexie als einen Body-Mass-Index unter 18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Al-Majid S, Waters H (2008) The biological mechanisms of cancer-related skeletal muscle wasting: the role of progressive resistance exercise. Biol Res Nurs 10(1):7–20. Review

    Google Scholar 

  • Argilés JM, López-Soriano FJ, Busquets S (2008) Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions. Int J Biochem Cell Biol 40(9):1674–1678. Epub 2008 Feb 14

    Google Scholar 

  • Argilés JM, Moore-Carrasco R, Busquets S, López-Soriano FJ (2003) Catabolic mediators as targets for cancer cachexia. Drug Discov Today 15;8(18):838–844. Review

    Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 276:C120–C127

    Google Scholar 

  • Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 15;391(3):1548–1554. Epub 2009 Dec 28

    Google Scholar 

  • Berenstein EG, Ortiz Z (2005) Megestrol acetate for the treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev 2:CD004310

    Google Scholar 

  • Bonetto A, Penna F, Minero VG, Reffo P, Bonelli G, Baccino FM, Costelli P (2009) Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. Curr Cancer Drug Targets 5:608–616. Epub 2009 Aug 1

    Google Scholar 

  • Bosutti A, Toigo G, Ciocchi B, Situlin R, Guarnieri G, Biolo G (2002) Regulation of muscle cathepsin B proteolytic activity in protein-depleted patients with chronic diseases. Clin Nutr 21(5):373–378

    Google Scholar 

  • Buck M, Chojkier M (1996) Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 15(8):1753–1765

    Google Scholar 

  • Busquets S, García-Martínez C, Alvarez B, Carbó N, López-Soriano FJ, Argilés JM (2000) Calpain-3 gene expression is decreased during experimental cancer cachexia. Biochim Biophys Acta 1475(1):5–9

    Google Scholar 

  • Carson JA, Baltgalvis KA (2010) Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev 38(4):168–176

    Google Scholar 

  • Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A, Busquets S, Bonelli G, Lopez-Soriano FJ, Doglietto GB, Argilés JM, Baccino FM, Rossi Fanelli F (2006) IGF-1 is downregulated in experimental cancer cachexia. Am J Physiol Regul Integr Comp Physiol 291(3):R674-83. Epub 2006 Apr 13

    Google Scholar 

  • Courneya KS, Segal RJ, Mackey JR, Gelmon K, Reid RD, Friedenreich CM, Ladha AB, Proulx C, Vallance JKH, Lane K, Yasui Y, McKenzie DC (2007) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol 25:4396–4404

    Google Scholar 

  • Deans C, Wigmore SJ (2005) Systemic inflammation, cachexia and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care 8(3):265–269

    Google Scholar 

  • DeJong CH, Busquets S, Moses AG, Schrauwen P, Ross JA, Argiles JM, Fearon KC (2005) Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia. Oncol Rep 14(1):257–263

    Google Scholar 

  • Donohoe CL, Ryan AM, Reynolds JV (2011) Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract 601434. Epub 2011 Jun 13

    Google Scholar 

  • Elia M, Van Bokhorst-de van der Schueren MA, Garvey J, Goedhart A, Lundholm K, Nitenberg G, Stratton RJ (2006) Enteral (oral or tube administration) nutritional support and eicosapentaenoic acid in patients with cancer: a systematic review. Int J Oncol 28(1):5–23. Review

    Google Scholar 

  • Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27(6):793–799. Epub 2008 Aug 21

    Google Scholar 

  • Falconer JS, Fearon KC, Ross JA, Elton R, Wigmore SJ, Garden OJ, Carter DC (1995) Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer 75(8):2077–2082

    Google Scholar 

  • Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A (1993) Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 268(35):26055–26058

    Google Scholar 

  • Fenton JI, Hursting SD, Perkins SN, Hord NG (2006) Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line. Carcinogenesis 27(7):1507–1515. Epub 2006 Apr 5

    Google Scholar 

  • Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103:903–910

    Google Scholar 

  • Galvao DA, Nosaka K, Taaffe DR, Spry N, Kristjanson LJ, McGuigan MR, Suzuki K, Yamaya K, Newton RU (2006) Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc 38:2045–2052

    Google Scholar 

  • Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D (1992) Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52(15):4113–4116

    Google Scholar 

  • Hussey HJ, Tisdale MJ (2000) Effect of the specific cyclooxygenase-2 inhibitor meloxicam on tumour growth and cachexia in a murine model. Int J Cancer 87(1):95–100

    Google Scholar 

  • Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52(2):72–91

    Google Scholar 

  • Kanzaki M, Soda K, Gin PT, Kai T, Konishi F, Kawakami M (2005) Erythropoietin attenuates cachectic events and decreases production of interleukin-6, a cachexia-inducing cytokine. Cytokine 32(5):234–239. Epub 2005 Dec 9

    Google Scholar 

  • Khal J, Wyke SM, Russell ST, Hine AV, Tisdale MJ (2005) Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia. Br J Cancer 93(7):774–780

    Google Scholar 

  • Laviano A, Meguid MM, Preziosa I, Fanelli FR (2007) Oxidative stress and wasting in cancer. Curr Opin Clin Nutr Metab Care 10:449–456

    Google Scholar 

  • Lenk K, Schuler G, Adams V (2010) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachex Sarcopenia Muscle 1(1):9–21. Epub 2010 Oct 26

    Google Scholar 

  • Lenk K, Schur R, Linke A, Erbs S, Matsumoto Y, Adams V, Schuler G (2009) Impact of exercise training on myostatin expression in the myocardium and skeletal muscle in a chronic heart failure model. Eur J Heart Fail 11:342–348

    Google Scholar 

  • Li YP, Schwartz RJ, Wadell ID, Holloway BR, Reid MB (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NFkB activation in response to tumor necrosis factor a. FASEB J 12:871–880

    Google Scholar 

  • Lira FS, Yamashita AS, Rosa JC, Tavares FL, Caperuto E, Carnevali Jr LC, Pimentel GD, Santos RV, Batista Jr ML, Laviano A, Rossi-Fanelli F, Seelaender M (2011) Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats. Nutr Metab 8(1):60. [Epub ahead of print]

    Google Scholar 

  • Mantovani G (2010) Randomised phase III clinical trial of 5 different arms of treatment on 332 patients with cancer cachexia. Eur Rev Med Pharmacol Sci 14(4):292–301

    Google Scholar 

  • Matthys P, Heremans H, Opdenakker G, Billiau A (1991) Anti-interferon-gamma antibody treatment, growth of Lewis lung tumours in mice and tumour-associated cachexia. Eur J Cancer 27(2):182–187

    Google Scholar 

  • Moses AW, Slater C, Preston T, Barber MD, Fearon KC (2004) Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer 90(5):996–1002

    Google Scholar 

  • O’Riordain MG, Falconer JS, Maingay J, Fearon KC, Ross JA (1999) Peripheral blood cells from weight-losing cancer patients control the hepatic acute phase response by a primarily interleukin-6 dependent mechanism. Int J Oncol 15(4):823–827

    Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406. Review

    Google Scholar 

  • Penna F, Busquets S, Pin F, Toledo M, Baccino FM, López-Soriano FJ, Costelli P, Argilés JM (2011) Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. J Cachex Sarcopenia Muscle 2(2):95–104. Epub 2011 May 11

    Google Scholar 

  • Rivadeneira DE, Evoy D, Fahey TJ 3rd, Lieberman MD, Daly JM (1998) Nutritional support of the cancer patient. CA Cancer J Clin 48(2):69–80

    Google Scholar 

  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103(44):16260–16265. Epub 2006 Oct 19

    Google Scholar 

  • Scheede-Bergdahl C, Watt HL, Trutschnigg B, Kilgour RD, Haggarty A, Lucar E, Vigano A (2011) Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin Nutr … [Epub ahead of print]

    Google Scholar 

  • Schmidt K, von Haehling S, Doehner W, Palus S, Anker SD, Springer J (2011) IGF-1 treatment reduces weight loss and improves outcome in a rat model of cancer cachexia. J Cachex Sarcopenia Muscle 2(2):105–109. Epub 2011 May 8

    Google Scholar 

  • Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomark Prev 14:1672–1680

    Google Scholar 

  • Segal RJ, Reid RD, Courneya KS, Malone SC, Parliament MB, Scott CG, Venner PM, Quinney HA, Jones LW, Slovinec D’Angelo ME, Wells GA (2003) Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol 21:1653–1659

    Google Scholar 

  • Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280(4):2847–2856. Epub 2004 Nov 5

    Google Scholar 

  • Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2(11):862–871

    Google Scholar 

  • Tisdale MJ (2008) Catabolic mediators of cancer cachexia. Curr Opin Support Palliat Care 2(4):256–261

    Google Scholar 

  • Tisdale MJ (2010) Reversing cachexia. Cell 142(4):511–512

    Google Scholar 

  • Todorov PT, McDevitt TM, Cariuk P, Coles B, Deacon M, Tisdale MJ (1996) Induction of muscle protein degradation and weight loss by a tumor product. Cancer Res 56(6):1256–1261

    Google Scholar 

  • van Hall G, Steensberg A, Fischer C, Keller C, Møller K, Moseley P, Pedersen BK. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals. J Clin Endocrinol Metab 93(7):2851–2858. Epub 2008 Apr 22

    Google Scholar 

  • Vogiatzis I, Simoes DCM, Stratakos G, Kourepini E, Terzis G, Manta P, Athanasopoulos D, Roussos C, Wagner PD, Zakynthinos S (2010) Effect of pulmonary rehabilitation on muscle remodelling in cachectic patients with COPD. Eur Respir J 36:301–310

    Google Scholar 

  • Wang XH, Du J, Klein JD, Bailey JL, Mitch WE (2009) Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int 76:751–759

    Google Scholar 

  • Watchorn TM, Waddell I, Dowidar N, Ross JA (2001) Proteolysis-inducing factor regulates hepatic gene expression via the transcription factors NF-(kappa)B and STAT3. FASEB J 15(3):562–564. Epub 2001 Jan 19

    Google Scholar 

  • Zaki MH, Nemeth JA, Trikha M (2004) CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int J Cancer 111(4):592–595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmer, P., Zopf, E., Baumann, F. (2012). Tumorkachexie. In: Sport und körperliche Aktivität in der Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25066-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25066-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25065-1

  • Online ISBN: 978-3-642-25066-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics