Skip to main content

Paleoecology in an Era of Climate Change: How the Past Can Provide Insights into the Future

  • Chapter
  • First Online:
Paleontology in Ecology and Conservation

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Anthropogenic climate change is the most prominent conservation issue of our time. Expectations are that the Earth’s climate will warm ~2.5–6.5° within the next century. The accompanying biological consequences will no doubt be huge. How will the diversity of life on our planet respond to rapid climate change? The best way to predict the future may be to examine the past as biota have experienced numerous episodes of climate fluctuation throughout geologic time. Some of these climatic fluctuations, particularly those of the late Quaternary, have been as rapid as those anticipated by climate warming scenarios. Analysis of the paleontological record can yield valuable information on how past climate change has shaped biodiversity in the past, and provide clues for what we may expect in the future.

‘A nation that forgets its past has no future’

Winston Churchill

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen BD, Anderson RY (1993) Evidence from western North America for rapid shifts in climate during the last glacial maximum. Science 260:1920–1923

    Google Scholar 

  • Alley RB (2000) The younger Dryas cold interval as viewed from central Greenland. Quat Sci Rev 19:213–226

    Google Scholar 

  • Alroy J (2000) Understanding the dynamics of trends within evolving lineages. Paleobiology 26:707–733

    Google Scholar 

  • Alroy J (2001) A multispecies overkill simulation of the end-Pleistocene Megafaunal mass extinction. Science 292:1893–1896

    Google Scholar 

  • Alroy J, Marshall CR, Bambach RK et al (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci USA 98:6261–6266

    Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ et al (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Google Scholar 

  • Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156:390–415

    Google Scholar 

  • Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A (2002) Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295:2267–2270

    Google Scholar 

  • Barnosky AD (2004) Biodiversity response to climatic change in the middle Pleistocene: the Porcupine cave fauna from Colorado. University of California Press, Berkeley

    Google Scholar 

  • Barnosky AD (2008) Climatic change, refugia, and biodiversity: where do we go from here? An editorial comment. Clim Chang 86:29–32

    Google Scholar 

  • Barnosky AD, Hadly EA, Bell CJ (2003) Mammalian response to global warming on varied temporal scales. J Mammal 84:354–368

    Google Scholar 

  • Barnosky AD, Bell CJ, Emslie SD, Goodwin HT, Mead JI, Repenning CA, Scott E, Shabel AB (2004) Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations. Proc Natl Acad Sci USA 101:9297–9302

    Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57

    Google Scholar 

  • Bergmann C (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 1:595–708

    Google Scholar 

  • Blois JL, Feranec RS, Hadly EA (2008) Environmental influences on spatial and temporal patterns of body size variation in California ground squirrels (Spermophilus beecheyi). J Biogeorgr 35:602–613

    Google Scholar 

  • Blois JL, McGuire JL, Hadly EA (2010) Small mammal diversity loss in response to late-Pleistocene climate change. Nature 465:771–775

    Google Scholar 

  • Bond GC, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–1010

    Google Scholar 

  • Bond GC, Showers W, Elliot M, Evans M, Lotti R, Hajdas I, Bonani G, Johnson S (1999) The North Atlantic’s 1-2 kyr climate rhythm: relation to Heinrich events. Dansgaard/Oeschger cycles and the little ice age. In: Clark P, Webb R, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales, vol 112, Geophysical monograph series. American Geophysical Union, Washington, DC

    Google Scholar 

  • Briggs AW, Stenzel U, Johnson PL et al (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci USA 104:14616–14621

    Google Scholar 

  • Brown JH (1968) Adaptation to environmental temperature in two species of woodrats, Neotoma cinerea and N. albigula, vol 135, Misc Pub Mus Zool. University of Michigan, Ann Arbor, pp 1–48

    Google Scholar 

  • Brown JH, Lee AK (1969) Bergmann’s rule and climatic adaptation in woodrats (Neotoma). Evol 23:329–338

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Towards a metabolic theory of ecology. Ecol 85:1771–1789

    Google Scholar 

  • Calder WA III (1983) Body size, mortality, and longevity. J Theor Biol 102:135–144

    Google Scholar 

  • Cardillo M (2003) Biological determinants of extinction risk: why are smaller species less vulnerable? Anim Conserv 6:63–69

    Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc Lond B 275:1441–1448

    Google Scholar 

  • Chan YL, Lacey EA, Pearson OP, Hadly EA (2005) Ancient DNA reveals loss of genetic diversity in a South American rodent. Biol Lett 1:423–426

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. The Carnegie Institute of Washington, Washington

    Google Scholar 

  • Coope GR, Wilkins AS (1994) The response of insect faunas to glacial-interglacial fluctuations. Phil Trans Biol Sci 344:19–26

    Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland ice sheet. Science 282:268–271

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Stevensen JP, Sveinbjornsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • Davis SJ (1977) Size variation of the fox, Vulpes vulpes, in the Palaearctic region today, and in Israel during the late Quaternary. J Zool Soc Lond 182:343–351

    Google Scholar 

  • Davis SJ (1981) The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology 7:101–114

    Google Scholar 

  • Davis MB (1989) Lags in vegetation response to greenhouse warming. Clim Chang 15:75–82

    Google Scholar 

  • Davis MB, Shaw R (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679

    Google Scholar 

  • Dayan T, Simberloff D, Tchernov E, Yom-Tov Y (1991) Calibrating the paleothermometer: climate, communities, and the evolution of body size. Paleobiology 17:189–199

    Google Scholar 

  • DeSantis LRG, Feranec RS, MacFadden BJ (2009) Effects of global warming on ancient mammalian communities and their environments. PLoS One 4:e5750

    Google Scholar 

  • EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Google Scholar 

  • Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 98:5399–5403

    Google Scholar 

  • Feranec R, Garcia N, Diez JC, Arsuaga JL (2010) Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba cave (Burgos, northern Spain) through stable isotope analysis. Palaeogeogr Palaeoclim Palaeoecol 297:263–272

    Google Scholar 

  • Finnegan S, Payne JL, Wang SC (2008) The red queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318–341

    Google Scholar 

  • Fisher JAD, Frank KT (2004) Abundance-distribution relationships and conservation of exploited marine fishes. Mar Ecol Progr Ser 279:201–213

    Google Scholar 

  • Foote M, Raup D (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–140

    Google Scholar 

  • Fujita K, Nuimura T (2011) Spatially heterogeneous wasting of Himalayan glaciers. Proc Natl Acad Sci USA 108:14011–14014

    Google Scholar 

  • Gaston KJ (2004) Macroecology and people. Basic Appl Ecol 5:303–307

    Google Scholar 

  • Gleason HA (1926) The individualistic concept of plant association. Bull Torrey Bot Club 53:7–26

    Google Scholar 

  • Graham RW (2005) Quaternary mammal communities: relevance of the individualistic response and non-analogue faunas. Paleontol Soc Pap 11:141–158

    Google Scholar 

  • Graham RW, Grimm EC (1990) Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol Evol 5:289–292

    Google Scholar 

  • Graham RW, Lundelius EL Jr (1994) FAUNMAP: a database documenting late Quaternary distributions of mammal species in the United States. Illinois State Museum, Springfield

    Google Scholar 

  • Graham RW, Mead JI (1987) Environmental fluctuations and evolution of mammalian faunas during the last deglaciation of North America. In: Ruddiman WF, Wright HE Jr (eds) The decade of North American geology, vol K-3, North America and adjacent oceans during the last geglaciation. Geol Soc Am, Boulder

    Google Scholar 

  • Graham RW, Lundelius EL Jr, Graham MA et al (1996) Spatial response of mammals to late Quaternary environmental fluctuations. Science 272:1601–1606

    Google Scholar 

  • Grayson DK (2005) A brief history of great Basin pikas. J Biogeogr 32:2103–2111

    Google Scholar 

  • Grimm E (2000) North American Pollen Database. IGBP PAGES/World. Data Centre for Paleoclimatology. NOAA/NGDC Paleoclimatology Program, Boulder. http://www.ngdc.noaa.gov/paleo/pollen.html

  • Grimm EC, Jacobson GL Jr (1992) Fossil-pollen evidence for abrupt climate changes during the past 18,000 years in eastern North America. Clim Dynam 6:179–184

    Google Scholar 

  • Grootes P, Steig E, Stuiver M, Waddington E, Morse D, Nadeau M (2001) The Taylor Dome Antarctic 18O record and globally synchronous changes in climate. Quat Res 56:289–298

    Google Scholar 

  • Hadly EA (1996) Influence of late Holocene climate on Northern rocky mountain mammals. Quat Res 46:298–310

    Google Scholar 

  • Hadly EA (1997) Evolutionary and ecological response of pocket gophers (Thomomys talpoides) to late-Holocene climate change. Biol J Linn Soc 60:277–296

    Google Scholar 

  • Hadly EA (1999) Fidelity of terrestrial vertebrate fossils to a modern ecosystem. Palaeogeogr Palaeoclim Palaeoecol 149:389–409

    Google Scholar 

  • Hadly EA, Kohn MH, Leonard JA, Wayne RK (1998) A genetic record of population isolation in pocket gophers during Holocene climate change. Proc Natl Acad Sci USA 95:6893–6896

    Google Scholar 

  • Harrington GJ (2001) Impact of Paleocene/Eocene greenhouse warming on North American paratropical forests. Palaios 16:266–278

    Google Scholar 

  • Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284

    Google Scholar 

  • Howat I, Joughin I, Scambos T (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science 315:1559–1561

    Google Scholar 

  • Hulbert RC Jr (1993) Taxonomic evolution of North American Neogene horses (subfamily Equinae): the rise an fall of and adaptive radiation. Paleobiology 19:216–234

    Google Scholar 

  • Huntly B (2007) Limitations on adaptation: evolutionary responses to climate change? Heredity 98:247–248

    Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages: solving the mystery. Harvard University Press, Cambridge

    Google Scholar 

  • Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121

    Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97:1630–1633

    Google Scholar 

  • IPCC (2007a) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31:192–210

    Google Scholar 

  • Jablonski D (2008) Extinction and the spatial dynamics of biodiversity. Proc Natl Acad Sci 105:11528–11535

    Google Scholar 

  • Jablonski D (2001) Lessons from the past: evolutionary impacts of mass extinctions. Proc Natl Acad Sci USA 98:5393–5398

    Google Scholar 

  • Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220

    Google Scholar 

  • Jackson ST, Weng C (1999) Late Quaternary extinction of a tree species in eastern North America. Proc Natl Acad Sci USA 96:13847–13852

    Google Scholar 

  • Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Ann Rev Earth Planet Sci 32:495–538

    Google Scholar 

  • Jackson ST, Betancourt JL, Lyford ME, Gray ST, Rylander KA (2005) A 40,000-year woodrat-midden record of vegetational and biogeographical dynamics in north-eastern Utah, USA. J Biogeogr 32:1085–1106

    Google Scholar 

  • Jacobson GL Jr, Webb T III, Grimm EC (1987) Patterns and rates of vegetation change during the deglaciation of eastern North America. In: Ruddiman WF, Wright HE Jr (eds) The decade of North American geology, vol K-3, North America and adjacent oceans during the last deglaciation. Geol Soc Am, Boulder

    Google Scholar 

  • Janevski GA, Baumiller TK (2009) Evidence for extinction selectivity throughout the marine invertebrate fossil record. Paleobiology 35:553–564

    Google Scholar 

  • Jones KE, Purvis A, Gittleman JL (2003) Biological correlates of extinction risk in bats. Am Nat 161:601–613

    Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbrae glacier. Nature 432:608–610

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796

    Google Scholar 

  • Kerr JT, Kharouba HM, Currie DJ (2007) The macroecological contribution to global change solutions. Science 316:1581–1584

    Google Scholar 

  • Koch PL (1998) Isotopic reconstruction of past continental environments. Ann Rev Earth Planet Sci 26:573–613

    Google Scholar 

  • Koch PL, Tuross N, Fogel ML (1997) The effect of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxyapatite. J Archaeol Sci 24:417–429

    Google Scholar 

  • Koehler PA, Anderson RS, Spaulding WG (2005) Development of vegetation in the central Mojave desert of California during the late Quaternary. Palaeogeogr Palaeoclim Palaeoecol 215:297–311

    Google Scholar 

  • Kuhn I, Bohning-Gaese K, Cramer W, Klotz S (2008) Macroecology meets global change research. Global Ecol Biogeogr 17:3–4

    Google Scholar 

  • Leighton LR, Schneider CL (2008) Taxon characteristics that promote survivorship through the Permian-Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna. Paleobiology 34:65–79

    Google Scholar 

  • Luckman A, Murray T, de Lange R, Hanna E (2006) Rapid and synchronous ice-dynamic changes in East Greenland. Geophys Res Lett 33:L03503

    Google Scholar 

  • Lyford ME, Jackson ST, Betancourt JL, Gray ST (2003) Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol Monogr 73:567–583

    Google Scholar 

  • Lyons SK (2003) A quantitative assessment of the range shifts of Pleistocene mammals. J Mammal 84:385–402

    Google Scholar 

  • Lyons SK, Smith FA (2010) Using a macroecological approach to study the fossil record. In: Alroy J, Hunt G (eds) Quantitative methods for studying paleobiology, vol 16, Paleonotol Soc Papers. Paleontological Society, Boulder, pp 1–26

    Google Scholar 

  • Lyons SK, Smith FA, Brown JH (2004) Of mice mastodons and men: human mediated extinction on four continents. Evol Ecol Res 6:339–358

    Google Scholar 

  • Lyons SK, Wagner PJ, Dzikiewicz K (2010) Ecological correlates of range shifts of Late Pleistocene mammals. Phil Trans Roy Soc Biol Sci 365:3681–3693

    Google Scholar 

  • MacFadden BJ (2008) Geographic variation in diets of ancient populations of 5-million-year-old (early Pliocene) horses from southern North America. Palaeogeogr Palaeoclim Palaeoecol 266:83–94

    Google Scholar 

  • MacPhee RD, Tikhonov AN, Mol D, Greenwood AD (2005) Late Quaternary loss of genetic diversity in muskox (Ovibos). BMC Evol Biol 5:49

    Google Scholar 

  • Margolis EQ, Swetnam TW, Allen CD (2011) Historical stand-replacing fire in upper montane forests of the Madrean Sky Islands and Mogollon Plateau, southwestern USA. Fire Ecol 7:88–107

    Google Scholar 

  • Martin RA, Barnosky AD (1993) Morphological change in Quaternary mammals in North America. Cambridge University Press, New York

    Google Scholar 

  • Martrat B, Grimalt JO, Lopez-Martinez C, Cacho I, Sierro FJ, Flores JA, Zahn R, Canals M, Curtis JH, Hodell DA (2004) Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 306:1762–1765

    Google Scholar 

  • Mayr E (1956) Geographic character gradients and climatic adaptation. Evol 10:105–108

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mensing S (2001) Late-glacial and early Holocene vegetation and climate change nears Owens Lake, eastern California. Quat Res 55:57–65

    Google Scholar 

  • Millien V (2004) Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, Apodemus argenteus. J Biogeogr 31:1267–1276

    Google Scholar 

  • Millien V, Damuth J (2004) Climate change and size evolution in an island rodent species: new perspectives on the island rule. Evol 58:1353–1360

    Google Scholar 

  • Millien V, Lyons SK, Olson L, Smith FA, Wilson AB, Yom-Tov Y (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecol Lett 9:853–869

    Google Scholar 

  • Millien-Parra V, Loreau M (2000) Community composition and size structure of murid rodents in relation to the biogeography of the Japanese archipelago. Ecography 23:413–423

    Google Scholar 

  • Neotoma Paleoecology Database (2011) http://www.neotomadb.org/

  • Niemelä P III, Chapin FS, Danell K, Bryant JP (2001) Herbivory-mediated responses of selected boreal forests to climatic change. Clim Chang 48:427–440

    Google Scholar 

  • NOAA (2001) http://www.publicaffairs.noaa.gov/releases2001/jan01/noaa01008.html

  • Ogutu JO, Owen-Smith N (2003) ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol Lett 6:412–419

    Google Scholar 

  • Olivier JGJ, Jannsens-Maenout G, Peters JAHW, Wilson J (2011) Long-term trend in global CO2 emissions; 2011 report. PBL Netherlands environmental assessment agency; Institute for environment and sustainability (IES) of the European Commission’s Joint Research Centre (JRC), The Hague

    Google Scholar 

  • Oreskes N (2004) The scientific consensus on climate change. Science 305:1686

    Google Scholar 

  • Overpeck JT, Bartlein PJ, Webb T III (1991) Potential magnitude of vegetation change in eastern North America: comparisons with the past. Science 254:692–695

    Google Scholar 

  • Pardi MI (2010) Local and broad scale changes in North American small mammal community structure: the Late Pleistocene through the Late Holocene. Master’s thesis, The Pennsylvania State University

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Google Scholar 

  • Patterson BR, Power VA (2002) Contributions of forage competition, harvest, and climate fluctuation to changes in population growth of northern white-tailed deer. Oecologia 130:62–71

    Google Scholar 

  • Pautasso M (2007) Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol Lett 10:16–24

    Google Scholar 

  • Payne JL, Finnegan S (2007) The effect of geographic range on extinction risk during background and mass extinction. Proc Natl Acad Sci USA 104:10506–10511

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Peters SE (2004) Relative abundance of Sepkoski’s evolutionary faunas in Cambrian-Ordovician deep subtidal environments in North America. Paleobiology 30:543–560

    Google Scholar 

  • Post E, Forchhammer MC (2002) Synchronization of animal population dynamics by large-scale climate. Nature 420:168–171

    Google Scholar 

  • Purdue JR (1980) Clinical variation of some mammals during the Holocene in Missouri. Quat Res 13:242–258

    Google Scholar 

  • Raup D (1992) Extinction: bad genes or bad luck? W.W. Norton, New York

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E et al (2004) IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Rensch B (1938) Some problems of geographical variation and species-formation. Proc Linn Soc Lond 150:275–285

    Google Scholar 

  • Rial JA (2004) Abrupt climate change: chaos and order at orbital and millennial scales. Global Planet Change 41:95

    Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Google Scholar 

  • Roy K, Hunt G, Jablonski D (2009) Phylogenetic conservatism of extinction in marine bivalves. Science 325:733–737

    Google Scholar 

  • Sampietro MI, Lao O, Caramelli D, Lari M, Pou R, Martí M, Bertranpetit J, Lalueza-Fox C (2007) Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe. Proc R Soc B 274:2161–2167

    Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci 4:156–159

    Google Scholar 

  • Semken HA Jr, Graham RW, Stafford TW Jr (2010) AMS14C analysis of late Pleistocene non-analog faunal components from 21 cave deposits in southeastern North America. Quat Int 217:240–255

    Google Scholar 

  • Sepkoski JJ Jr (1992) A compendium of fossil marine animal families, 2nd edn. Contr Biol Geol 83:1–156

    Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146

    Google Scholar 

  • Shuman BN, Bartlein PJ, Webb T III (2005) The magnitude of millennial- and orbital-scale climatic change in eastern North America during the late Quaternary. Quat Sci Rev 24:2194–2206

    Google Scholar 

  • Shuman BN, Newby P, Donnelly JP (2009) Abrupt climate change as an important agent of ecological change in the northeast U.S. throughout the past 15,000 years. Quat Sci Rev 28:1693–1709

    Google Scholar 

  • Smith FA, Betancourt JL (1998) Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau. Quat Res 47:1–11

    Google Scholar 

  • Smith FA, Betancourt JL (2003) The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah. Quat Res 59:160–171

    Google Scholar 

  • Smith FA, Betancourt JL (2006) Predicting woodrat (Neotoma) responses to anthropogenic warming from studies of the palaeomidden record. J Biogeogr 33:2061–2076

    Google Scholar 

  • Smith FA, Charnov EL (2001) Fitness tradeoffs select for semelparous (suicidal) reproduction in an extreme environment. Evol Ecol Res 3:595–602

    Google Scholar 

  • Smith JT, Roy K (2006) Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiol 32:408–416

    Google Scholar 

  • Smith FA, Betancourt JL, Brown JH (1995) Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270:2012–2014

    Google Scholar 

  • Smith FA, Brown JH, Haskell JP et al (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat 163:672–691

    Google Scholar 

  • Smith FA, Lyons SK, Ernest SKM, Brown JH (2008) Macroecology: more than the division of food and space among species on continents. Progr Phys Geogr 32:115–138

    Google Scholar 

  • Smith FA, Crawford DL, Harding LE, Lease HM, Murray IW, Raniszewski A, Youberg KM (2009) A tale of two species: extirpation and range expansion during the late Quaternary in an extreme environment. Global Planet Change 65:122–133

    Google Scholar 

  • Stafford TW Jr, Hare PE, Currie LA, Jull AJT, Donahue D (1991) Accelerator radiocarbon dating at the molecular level. J Archaeol Sci 18:35–72

    Google Scholar 

  • Stafford TW Jr, Semken HA Jr, Graham RW, Klippel WF, Markova A, Smirnov NG, Southon J (2011) First accelerator mass spectrometry 14C dates documenting contemporaneity of nonanalog species in late Pleistocene mammal communities. Geol 27:903–906

    Google Scholar 

  • Theriot EC, Fritz SC, Whitlock C, Conley DJ (2006) Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology 32:38–54

    Google Scholar 

  • Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332

    Google Scholar 

  • Thompson RS, Whitlock C, Bartlein PJ, Harrison SP, Spaulding WG (1993) Climatic changes in the western United States since 18,000 yr B.P. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Tittensor DP, Micheli F, Nystrom M, Worm B (2007) Human impacts on the species area relationship reef fish assemblages. Ecol Lett 10:760–772

    Google Scholar 

  • Van Devender TR, Spaulding WG (1979) Development of vegetation and climate in the southwestern United States. Science 204:701–710

    Google Scholar 

  • Vrba ES, DeGusta D (2004) Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Phil Trans Roy Soc Lond Biol 359:285–293

    Google Scholar 

  • Wake DB, Vrendenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Google Scholar 

  • Webb T, Noble D, Freckleton RP (2007) Abundance-occupancy dynamics in a human dominated environment: linking interspecific and intraspecific trends in British farmland and woodland birds. J Anim Ecol 76:123–134

    Google Scholar 

  • White PJT, Kerr JT (2007) Human impacts on environment-diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecol Biogeogr 16:290–299

    Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795

    Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Google Scholar 

  • Williams JW, Shuman BN, Webb T III (2001) Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecol 82:3346–3362

    Google Scholar 

  • Wilson JW, van Rensburg BJ, Ferguson JWH, Keith M (2008) The relative importance of environment, human activity and space in explaining species richness of South African bird orders. J Biogeogr 35:342–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa I. Pardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pardi, M.I., Smith, F.A. (2012). Paleoecology in an Era of Climate Change: How the Past Can Provide Insights into the Future. In: Louys, J. (eds) Paleontology in Ecology and Conservation. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25038-5_6

Download citation

Publish with us

Policies and ethics