Skip to main content

The Past and Future of the Mammoth Steppe Ecosystem

  • Chapter
  • First Online:
Paleontology in Ecology and Conservation

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

During the Last Glacial Maximum (LGM) the mammoth steppe was the planet’s biggest biome. Ice rich loess-like soils of this biome covered vast northern territories. These soils are currently one of the biggest carbon reservoirs. It is likely that in this century the bigger part of these soils will thaw. This would lead to massive erosion, destruction of modern ecosystems and a large emission of carbon dioxide and methane into the atmosphere, which are produced from the decomposition of Pleistocene organics. Minimizing these effects is possible only through the restoration of ecosystems similar to the Pleistocene mammoth steppe. Skeleton densities in the permafrost show that the mammoth steppe was a highly productive ecosystem similar to African savannas. Biomass of animals in the north of Siberia was ~10t/km2. Herbivores enhanced biocyclicity, trampled moss and shrubs and maintained pastures. Therefore this ecosystem was only partially dependent on climate. Analyses of climate dynamics, vegetation and animals shows that today the climate in the north of Siberia, Alaska and Yukon are close to the optimum of the mammoth steppe, and that climate warming did not destroy this ecosystem. Rather, humans are the more likely cause. After the LGM, climate warming allowed humans to penetrate the north, where they decreased animal densities to the point where they became insufficient to maintain pastures. In this chapter we discuss questions of preservation of bones and artifacts in the permafrost, physiology and evolution of pasture ecosystems and the role of humans in this ecosystem.

‘If one had not seen this with one’s own eyes, it would be impossible to believe that in these desolate areas there could exist such a large number of animals, congregating sometimes in herds of thousands. Only by wandering from one place to another could these large groups find enough feed on the meager grasslands of the wastelands. But the animals do not know their major enemy – humans, and the animals live wild and free, far away from bloodthirsty pursuit.’

N.M. Prjevalskii

Mongolia and Tangut country (1873)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Faure H (1998) A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction. Global Plan Change 3:16–17

    Google Scholar 

  • Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348:711–714

    Article  Google Scholar 

  • Alroy J (2001) A multi-species overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292:1893–1896

    Article  Google Scholar 

  • Alvarez-Lao DJ, García N (2011) Geographical distribution of Pleistocene cold-adapted large mammal faunas in the Iberian Peninsula. Quat Inter 233:159–170

    Article  Google Scholar 

  • Atlas selskogo khozyaistva Yakutskoi ASSR (1989) In: Matveev IA (ed), GUGK, SSSR, Moscow (in Russian)

    Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75

    Article  Google Scholar 

  • Boeskorov GG, Kirillov ND, Lazarev PA, Testsov VV (2008) Prognostic estimate of mammoth ivory resource in the north of Yakutia. Problemy Regional’noi Ekologii 2:106–109 (in Russian)

    Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chuprynin VI, Zimov SA, Molchanova LA (2001) Modeling of thermal regime of soil accounting for biological heat source. Earth Cryosp 5:80–87

    Google Scholar 

  • Donlan CJ, Berger J, Bock CE et al (2006) Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. Am Nat 168:660–681

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54

    Article  Google Scholar 

  • Garutt NV, Boeskorov GG (2001) Woolly rhinoceros: on the history of the genus. In: Rozanov YA (ed) Mammoth and its environment: 200 years of investigations. GEOS, Moscow, pp 157–167 (in Russian)

    Google Scholar 

  • Guthrie RD (1990) Frozen fauna of the mammoth Steppe. The University of Chicago Press, Chicago

    Google Scholar 

  • Guthrie RD (2004) Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 426:746–749

    Article  Google Scholar 

  • Guthrie RD (2006) New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441:207–209

    Article  Google Scholar 

  • Khvorostyanov DV, Ciais P, Krinner G, Zimov SA (2008) Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophys Res Lett. doi:10.1029/2008GL033639

  • Kuzmin A, Orlova LA, Zolnikov ID, Igolnikov AE (2001) The dynamic of mammoth (Mammuthis primigenious Blum.) population in northern Asia in the late Pleistocene-Holocene. In: Rozanov YA (ed) Mammoth and its environment: 200 years of investigations. GEOS, Moscow, pp 124–139 (in Russian)

    Google Scholar 

  • Lee X, Goulden ML, Hollinger DY et al (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384–387

    Article  Google Scholar 

  • Louys J (2008) Quaternary extinctions in Southeast Asia. In: Elewa AMT (ed) Mass extinction. Springer, Heidelberg

    Google Scholar 

  • Martin PS (1984) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions. University of Arizona Press, Tucson

    Google Scholar 

  • Muhs D (2003) Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last-Interglacial-Glacial cycle in central Alaska. Quaternary Sci Rev 22:1947–1986

    Article  Google Scholar 

  • Nikolskiy PA, Basilyan AE, Sulerzhitsky LD, Pitulko VV (2009) Prelude to the extinction: revision of the Achchagyi–Allaikha and Berelyokh mass accumulations of mammoth. Quat Int. doi:10.1016/j.quaint.2009.10.028

  • Pavlov AV (1984) Energoobmen v landshaftnoi sfere zemli. Nauka, Sibirskoe otdelenie, Novosibirsk (in Russian)

    Google Scholar 

  • Pitul’ko VV (1993) An early Holocene site in the Siberian High Arctic. Arctic Anthropol 30:13–21

    Google Scholar 

  • Przhevalsky NM (1947) Puteshestvie v Ussuriiskom krae. 1867–1869. OGIZ, Moskva (in Russian)

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E et al (2004) INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Rivkina EM, Kraev GN, Krivushin KV, Laurinavichus KS, Fyodorov-Davydov DG, Kholodov AL, Shcherbakova VA, Gilichinsky DA (2006) Methane in permafrost of Northern Arctic. Earth Cryosp 10:23–41

    Google Scholar 

  • Schirrmeister L, Siegert C, Kuznetsova T, Kuzmina S, Andreev AA, Kienast F, Meyer H, Bobrov AA (2002) Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quat Int 89:97–118

    Article  Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934

    Article  Google Scholar 

  • Sher AV (1997) Nature restructuring in the East-Siberian Arctic at the Pleistocene-Holocene boundary and its role in mammal extinction and emerging of modern ecosystems. Earth Cryosp 1:3–11, 21–29

    Google Scholar 

  • Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhitsky LD (2005) New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat Sci Rev 24:533–569

    Article  Google Scholar 

  • Sokolov IA, Konyushkov DE (1998) Soils and the soil mantle of the Northern Circumpolar region. Eurasian Soil Sci 31(11):1179–1193

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Stephenson RO, Gerlach SC, Gurthrie RD, Harington CR, Mills RO, Hare G (2001) Wood bison in late Holocene Alaska and adjacent Canada; paleontological, archaeological and historical records. In: Gerlach SC, Murray MS (eds) People and wildlife in northern North America: essays in honor of R. Dale Guthrie, vol 944, BAR international series. Archaeopress, Oxford

    Google Scholar 

  • Syroechkovskii VE (1986) Severnii Olen’. Agropromizdat, Moscow (in Russian)

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov SA (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:2023

    Article  Google Scholar 

  • Vartanyan SL (2007) Wrangel Island at the end of Quaternary period: geology and paleogeography. Ivan Limbakh, St. Petersburg

    Google Scholar 

  • Vasil’chuk YK, Punning JM, Vasil’chuk AC (1997) Radiocarbon ages of mammoths in northern Eurasia: implications for population development and late Quaternary environment. Radiocarbon 39:1–18

    Google Scholar 

  • Vasil’chuk YK, Vasil’chuk AC, Rank D, Kutchera W, Kim J-C (2001) Radiocarbon dating of δ18O-δD plots in late Pleistocene ice-wedges of the Duvanny Yar (lower Kolyma River, northern Yakutia). Radiocarbon 43:503–515

    Google Scholar 

  • Velichko AA, Zelikson EM (2001) Landscape and climate conditions and the food basis for mammoth existence. In: Rozanov YA (ed) Mammoth and its environment: 200 years of investigations. GEOS, Moscow, pp 188–200 (in Russian)

    Google Scholar 

  • Vereshchagin NK, Tikhonov AN (1990) Exter’er Mamonta. Permafrost Institute, Yakutsk (in Russian)

    Google Scholar 

  • Walter KM, Zimov SA, Chantom JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71

    Article  Google Scholar 

  • Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS III (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglacial. Science 318:633–636

    Article  Google Scholar 

  • Yershov ED (1998) General geocryology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yesner DR, Coltrain JB, O’Rourke D, Crossen KJ, Enk J, Veltre DW (2007) DNA sequence and stable isotopic analyses applied to the mid-Holocene mammoth remains from Qagnax’ cave, Pribilov islands, Alaska. In: Boeskorov GG (ed) IV international mammoth conference: abstracts, Yakutsk

    Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatlands dynamic since the Last Glacial Maximum. Geophys Res Lett 37:L13402

    Article  Google Scholar 

  • Zhigotsky VYa (1982) Korennoe izmenenie geokhimii landshaftov na nizmennostyakh Severo-Vostoka SSSR na granice pleistocen-golocen. In: Shumilov YV (ed) Merzlotno-geologicheskie processy i Paleogeographiya nizmennostei Severo-Vostoka Azii. Magadan, pp 101–111 (in Russian)

    Google Scholar 

  • Zimov NS, Zimov SA, Zimova AE, Zimova GM, Chuprynin VI, Chapin FS III (2009) Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget. Geophys Res Lett. doi:10.1029/2008GL036332

  • Zimov SA (2005) Pleistocene Park: return of mammoth’s ecosystem. Science 308:796–798

    Article  Google Scholar 

  • Zimov SA, Zimov NS. Unpublished data

    Google Scholar 

  • Zimov SA, Chupryninm VI (1991) Ecosystems: steadiness, competition and purposeful transformation. Nauka, Moscow (in Russian)

    Google Scholar 

  • Zimov SA, Chuprynin VI, Oreshko AP, Chapin FS III, Reynolds JF, Chapin MC (1995) Steppe-tundra transition: an herbivore-driven biome shift at the end of the pleistocene. Am Nat 146:765–794

    Article  Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006a) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett. doi:10.1029/2006GL027484

  • Zimov SA, Schuur EAG, Chapin FS III (2006b) Permafrost and the global carbon budget. Science 312:1612

    Article  Google Scholar 

  • Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF, Chapin FS III, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277:800–802

    Article  Google Scholar 

  • Zimov SA, Zimov NS, Chapin FS III, Tikhonov AN. Mammoth steppe: a high-productivity phenomenon. Quat Sci Rev, under review

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Zimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimov, S.A., Zimov, N.S., Chapin, F.S. (2012). The Past and Future of the Mammoth Steppe Ecosystem. In: Louys, J. (eds) Paleontology in Ecology and Conservation. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25038-5_10

Download citation

Publish with us

Policies and ethics