Skip to main content

Polarization Dynamics of VCSELs

  • Chapter
  • First Online:
VCSELs

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 166))

Abstract

In this chapter we wrap up the experimental and theoretical results on polarization dynamics of solitary vertical-cavity surface-emitting lasers. Experiments have shown that VCSELs emit a linearly polarized fundamental transverse mode either along the [110] or \([1\overline 10]\) crystallographic direction. Polarization switching between these modes can occur when the injection current is increased, showing either a frequency shift from the higher to the lower frequency mode (type I) or the reverse (type II). The two modes of linear polarization are strongly anti-correlated. The switching can happen through a region of mode hopping, with a dwell time scaling over eight orders of magnitude with the switching current, or through a region of hysteresis. Thermal (carrier) effects influence the polarization behavior of VCSELs through a red (blue) shift of the gain maximum. Also, in-plane anisotropic strain can strongly modify the polarization behavior of VCSELs. All these experimental results call for explanations, as there is no a priori intrinsic polarization selection mechanism in VCSELs. We present different gain equalization models to explain type I, type II or double polarization switching. Alternatively, the spin-flip model can explain both types polarization switching by involving a microscopic spin-flip relaxation mechanism. Its predictive power has been experimentally established as, e.g., polarization switching through elliptically polarized states and dynamical instabilities. Finally, we highlight some perspective applications using polarization dynamics of VCSELs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Li, K. Iga (eds.), Vertical-Cavity Surface-Emitting Laser Devices (Springer, Berlin, 2003)

    Google Scholar 

  2. C. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  3. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995)

    Google Scholar 

  4. W.W. Chow, S.W. Koch, M. Sargent III, Semiconductor-Laser Physics (Springer, Berlin, 1994)

    Google Scholar 

  5. S.L. Chuang, Physics of Optoelectronics Devices (Wiley, New York, 1995)

    Google Scholar 

  6. C.J. Chang-Hasnain, J.P. Harbison, G. Hasnain, A.C. Von Lehmen, L.T. Florez, N.G. Stoffel, Dynamic, polarization, and transverse-mode characteristics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron. 27, 1402 (1991)

    ADS  Google Scholar 

  7. K.D. Choquette, D.A. Richie, R.E. Leibenguth, Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization. Appl. Phys. Lett. 64, 2062 (1994)

    ADS  Google Scholar 

  8. A.K. Jansen van Doorn, M.P. van Exter, J.P. Woerdman, Elasto-optic anisotropy and polarization orientation of guided vertical-cavity surface-emitting semiconductor lasers. Appl. Phys. Lett. 69, 1041 (1996)

    ADS  Google Scholar 

  9. K.D. Choquette, R.E. Leibenguth, Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photon. Technol. Lett. 6, 40 (1994)

    ADS  Google Scholar 

  10. K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, I. Veretennicoff, Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 77, 1590 (2000)

    ADS  Google Scholar 

  11. K. Panajotov, M. Camarena, M.C. Moreno, H.J. Unold, R. Michalzik, H. Thienpont, J. Danckaert, I. Veretennicoff, G. Verschaffelt, Polarization behavior and mode structure of vertical-cavity surface-emitting lasers with elliptical surface relief. Proceedings of SPIE, vol. 4994 (2003), p. 127

    ADS  Google Scholar 

  12. K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, I. Veretennicoff, Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications. Am. Inst. Phys. Conf. Proc. 560, 403 (2001)

    ADS  Google Scholar 

  13. A.K. Jansen van Doorn, M.P. van Exter, J.P. Woerdman, Tailoring the birefringence in a vertical-cavity semiconductor laser. Appl. Phys. Lett. 69, 3635 (1996)

    ADS  Google Scholar 

  14. A.K. Jansen van Doorn, M.P. van Exter, A.M. van der Lee, J.P. Woerdman, Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser. Phys. Rev. 55, 1473 (1997)

    ADS  Google Scholar 

  15. M.P. van Exter, A.K. Jansen van Doorn, J.P. Woerdman, Electro-optic effect and birefringence in semiconductor vertical-cavity lasers. Phys. Rev. A 56, 845 (1997)

    ADS  Google Scholar 

  16. P. Debernardi, G.P. Bava, C. Degen, I. Fischer, W. Elsäßer, Influence of anisotropies on transverse modes in oxide-confined VCSELs. IEEE J. Quantum Electron 38, 73 (2002)

    ADS  Google Scholar 

  17. R.F.M. Hendriks, M.P. van Exter, J.P. Woerdman, A. van Geelen, L. Weegels, K.H. Gulden, M. Moser, Electro-optic birefringence in semiconductor vertical-cavity lasers. Appl. Phys. Lett. 71, 2599 (1997)

    ADS  Google Scholar 

  18. D. Vakhshoori, Symmetry considerations in vertical-cavity surface-emitting lasers: prediction of removal of polarization isotropicity on (001) substrates. Appl. Phys. Lett. 65, 259 (1994)

    ADS  Google Scholar 

  19. Z.G. Pan, S. Jiang, M. Dagenais, R.A. Morgan, K. Kojima, M.T. Asom, R.E. Leibenguth, G.D. Guth, M.W. Focht, Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 63, 2999 (1993)

    ADS  Google Scholar 

  20. S. Jiang, Z. Pan, M. Dagenais, R.A. Morgan, K. Kojiama, High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 63, 3545 (1993)

    ADS  Google Scholar 

  21. K.D. Choquette, K.L. Lear, R.E. Leibenguth, M.T. Asom, Polarization modulation of cruciform vertical-cavity laser diodes. Appl. Phys. Lett. 64, 2767 (1994)

    ADS  Google Scholar 

  22. H. Kawaguchi, I.S. Hidayat, Y. Takahashi, Y. Yamayoshi, Pitchfork bifurcation polarization bistability in vertical-cavity surface-emitting lasers. Electron. Lett. 31, 109 (1995)

    Google Scholar 

  23. K.D. Choquette, R.P. Schneider Jr., K.L. Lear, R.E. Leibenguth, Gain-dependent polarization properties of vertical-cavity lasers. IEEE J. Select. Topics Quantum Electron. 1, 661 (1995)

    Google Scholar 

  24. J.E. Epler, S. Gehrsitz, K.H. Gulden, M. Moser, H.G. Sigg, H.W. Lehmann, Mode behavior and high resolution spectra of circularly symmetric GaAs-AlGaAs air-post vertical cavity surface emitting lasers. Appl. Phys. Lett. 69, 722 (1996)

    ADS  Google Scholar 

  25. U. Fiedler, G. Reiner, P. Schnitzer, K.J. Ebeling, Top surface-emitting vertical-cavity laser diodes for 10-Gb/s data transmission. IEEE Photon. Technol. Lett. 8, 746 (1996)

    ADS  Google Scholar 

  26. J. Martin-Regalado, J.L.A. Chilla, J.J. Rocca, P. Brusenbach, Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature. Appl. Phys. Lett. 70, 3350 (1997)

    ADS  Google Scholar 

  27. H. Kawaguchi, Bistable laser diodes and their applications: state of the art. IEEE J. Select. Topics Quantum Electron 3, 1254 (1997)

    Google Scholar 

  28. C.L. Chua, R.L Thornton, D.W. Treat, R.M. Donaldson, Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers. Appl. Phys. Lett. 73, 1631 (1998)

    Google Scholar 

  29. K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, I. Veretennicoff, Polarization switching in VCSEL’s due to thermal lensing. IEEE Photon. Technol. Lett. 10, 6 (1998)

    ADS  Google Scholar 

  30. M.P. van Exter, A. Al-Remawi, J.P. Woerdman, Polarization fluctuations demonstrate nonlinear anisotropy of a vertical-cavity semiconductor laser. Phys. Rev. Lett. 80, 4875 (1998)

    ADS  Google Scholar 

  31. M.P. van Exter, M.B. Willemsen, J.P. Woerdman, Polarization fluctuations in vertical-cavity semiconductor lasers. Phys. Rev. A 58, 4191 (1998)

    ADS  Google Scholar 

  32. M.B. Willemsen, M.P. van Exter, J.P. Woerdman, Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser. Phys. Rev. A 60, 4105 (1999)

    ADS  Google Scholar 

  33. B. Ryvkin, K. Panajotov, A. Georgievski, J. Danckaert, M. Peeters, G. Verschaffelt, H. Thien pont, I. Veretennicoff, Effect of photon-energy-dependent loss and gain mechanisms on polarization switching in vertical-cavity surface-emitting lasers. J. Opt. Soc. Am. B 16, 2106 (1999)

    Google Scholar 

  34. M.B. Willemsen, M.P. van Exter, J.P. Woerdman, Anatomy of a polarization switch of a vertical-cavity semiconductor laser. Phys. Rev. Lett. 84, 4337 (2000)

    ADS  Google Scholar 

  35. T. Ackemann, M. Sondermann, Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 78, 3574 (2001)

    ADS  Google Scholar 

  36. G. Verschaffelt, J. Albert, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, F. Marin, Frequency response of current-driven polarization modulation in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 80, 2248 (2002)

    ADS  Google Scholar 

  37. Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, P. Tayebati, Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning up to 14-mW output power. IEEE J. Quantum Electron. 39, 1037 (2003)

    ADS  Google Scholar 

  38. M. Sondermann, M. Weinkath, T. Ackemann, Polarization switching to the gain-disfavored mode in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 40, 97 (2004)

    ADS  Google Scholar 

  39. M. Sondermann, T. Ackemann, S. Balle, J. Mulet, K. Panajotov, Experimental and theoretical investigations on elliptically polarized dynamical transition states in the polarization switching of vertical-cavity surface-emitting lasers. Opt. Commun. 235, 421 (2004)

    ADS  Google Scholar 

  40. G. Giacomelli, F. Marin, M. Gabrysch, K.H. Gulden, M. Moser, Polarization competition and noise properties of VCSELs. Opt. Commun. 146, 136 (1998)

    ADS  Google Scholar 

  41. G. Giacomelli, F. Marin, I. Rabbiosi, Stochastic and bona fide resonance: an experimental investigation. Phys. Rev. Lett. 82, 675 (1999)

    ADS  Google Scholar 

  42. M.B. Willemsen, M.U.F. Khalid, M.P. van Exter, J.P. Woerdman, Polarization switching of a vertical-cavity semiconductor laser as a Kramers hopping problem. Phys. Rev. Lett. 82, 4815 (1999)

    ADS  Google Scholar 

  43. B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, F. Marin, Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: theory and experiment. Phys. Rev. A 68, 013813 (2003)

    ADS  Google Scholar 

  44. G. Verschaffelt, J. Albert, B. Nagler, M. Peeters, J. Danckaert, S. Barbay, G. Giacomelli, F. Marin, Frequency response of polarization switching in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 39, 1177 (2003)

    ADS  Google Scholar 

  45. J. Danckaert, M. Peeters, C. Mirasso, M.S. Miguel, G. Verschaffelt, J. Albert, B. Nagler, H. Unold, R. Michalzik, G. Giacomelli, F. Marin, Stochastic polarization switching dynamics in vertical-cavity surface-emitting lasers: theory and experiment. IEEE J. Select. Topics Quantum Electron. 10, 911 (2004)

    Google Scholar 

  46. G. van der Sande, M. Peeters, I. Veretennicoff, J. Danckaert, G. Verschaffelt, S. Balle, The effect of stress, temperature, and spin flip on polarization switching in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 42, 898 (2006)

    Google Scholar 

  47. M. Ohtsu, Y. Teramachi, Y. Otsuka, A. Osaki, Analysis of mode-hopping phenomena in an AlGaAs laser. IEEE J. Quantum Electron. 22, 535 (1986)

    ADS  Google Scholar 

  48. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland Elsevier, Amsterdam, 1987)

    Google Scholar 

  49. F. Koyama, K. Morito, K. Iga, Intensity noise and polarization stability of GaAlAs-GaAs surface emitting lasers. IEEE J. Quantum Electron. 27, 1410 (1991)

    ADS  Google Scholar 

  50. D.V. Kuksenkov, H. Temkin, S. Swirhun, Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 67, 2141 (1995)

    ADS  Google Scholar 

  51. E. Goobar, J.W. Scott, B. Thibeault, G. Robinson, Y. Akulova, L.A. Coldren, Calibrated intensity noise measurements in microcavity laser diodes. Appl. Phys. Lett. 67, 3697 (1995)

    ADS  Google Scholar 

  52. D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jäger, R. Michalzik, K.J. Ebeling, Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers. Appl. Phys. Lett. 73, 717 (1998)

    ADS  Google Scholar 

  53. J.-L. Vey, C. Degen, K. Auen, W. Elsäßer, Quantum noise and polarization properties of vertical-cavity surface-emitting lasers. Phys. Rev. A 60, 3284 (1999)

    ADS  Google Scholar 

  54. D.C. Kilper, R.A. Ross, J.L. Carlsten, K.L. Lear, Squeezed light generated by a microcavity laser. Phys. Rev. A 55, R3323 (1997)

    ADS  Google Scholar 

  55. V. Badilita, J.-F. Carlin, M. Ilegems, M. Brunner, G. Verschaffelt, K. Panajotov, Control of polarization switching in vertical coupled-cavities surface emitting lasers. IEEE Photon. Techn. Lett. 16, 365 (2004)

    ADS  Google Scholar 

  56. R.P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, C. Weisbuch, Coupled semiconductor microcavities. Appl. Phys. Lett. 65, 2093 (1994)

    ADS  Google Scholar 

  57. K. Panajotov, V. Badilita, J.-F. Carlin, H. Thienpont, I. Veretennicoff, Quantum confined Stark effect in coupled-cavity VCSELs. Proceedings of SPIE, vol. 5359 (2004), p. 360

    ADS  Google Scholar 

  58. D.M. Grasso, K.D. Choquette, Temperature-dependent polarization characteristics of composite-resonator vertical-cavity lasers. IEEE J. Quantum Electron. 41, 127 (2005)

    ADS  Google Scholar 

  59. S. Hallstein, J.D. Berger, M. Hilpert, H.C. Schneider, W.W. Rühle, F. Janke, S.W. Koch, H.M. Gibbs, G. Khitrova, M. Oestreich, Manifistation of coherent spin precession in stimulated semiconductor emission dynamics. Phys. Rev. B 56, R7076 (1997)

    ADS  Google Scholar 

  60. H. Ando, T. Sogawa, H. Gotoh, Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 73, 566 (1998)

    ADS  Google Scholar 

  61. R.F.M. Hendriks, M.P. van Exter, J.P. Woerdman, K.H. Gulden, M. Moser, Memory effects for polarization of pump light in optically pumped vertical-cavity semiconductor lasers. IEEE J. Quantum Electron. 34, 1455 (1998)

    ADS  Google Scholar 

  62. E.L. Blansett, M.G. Raymer, G. Khitrova, H.M. Gibbs, D.K. Serkland, A.A. Allerman, K.M. Geib, Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers. Opt. Express 9, 312 (2001)

    ADS  Google Scholar 

  63. E.L. Blansett, M.G. Raymer, G. Cui, G. Khitrova, H.M. Gibbs, D.K. Serkland, A.A. Allerman, K.M. Geib, Picosecond polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 41, 287 (2005)

    ADS  Google Scholar 

  64. M.Z. Maialle, M.H. Degani, Electron-spin relaxation in p-type quantum wells via electron-hole exchange interaction: the effects of the valence-band spin mixing and of an applied longitudinal electric field. Phys. Rev. B 55, 13771 (1997)

    ADS  Google Scholar 

  65. N.B. Patel, J.E. Ripper, P. Brosson, Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress. IEEE J. Quantum Electron. 9, 338 (1973)

    ADS  Google Scholar 

  66. Y.C. Chen, J.M. Liu, Polarization bistability in semiconductor lasers. Appl. Phys. Lett. 46, 16 (1985)

    ADS  Google Scholar 

  67. Y.C. Chen, J.M. Liu, Polarization bistability in semiconductor laser: rate-equation analysis. Appl. Phys. Lett. 50, 1406 (1987)

    ADS  Google Scholar 

  68. W.E. Lamb, Theory of an optical maser. Phys. Rev. 134, A1429 (1964)

    ADS  Google Scholar 

  69. C. Tang, A. Schremer, T. Fujita, Bistability in two-mode semiconductor lasers via gain saturation. Appl. Phys. Lett. 51, 1392 (1987)

    ADS  Google Scholar 

  70. M. Asada, Y. Suematsu, Density-matrix theory of semiconductor lasers with relaxation broadening model—gain and gain-suppression in semiconductor lasers. IEEE J. Quantum Electron. 21, 434 (1985)

    ADS  Google Scholar 

  71. G.P. Agrawal, Gain nonlinearities in semiconductor lasers: theory and application to distributed feedback lasers. IEEE J. Quantum Electron. 23, 860 (1987)

    ADS  Google Scholar 

  72. M. Sargent III, Theory of a multimode quasi-equilibrium semiconductor-laser. Phys. Rev. A 48, 717 (1993)

    ADS  Google Scholar 

  73. A. Uskov, J. Mørk, J. Mark, Wave mixing in semiconductor-laser amplifiers due to carrier heating and spectral-hole burning. IEEE J. Quantum Electron. 30, 1769 (1994)

    ADS  Google Scholar 

  74. B.M. Yu, J.M. Liu, Polarization-dependent gain, gain nonlinearities, and emission characteristics of internally strained InGaAsP/InP semiconductor lasers. J. Appl. Phys. 69, 7444 (1991)

    ADS  Google Scholar 

  75. Y. Takahashi, H. Kawaguchi, Polarization-dependent gain saturations in quantum-well lasers. IEEE J. Quantum Electron. 36, 864 (2000)

    ADS  Google Scholar 

  76. Y. Takahashi, H. Kawaguchi, Strain-dependence of the gain saturations in InGaAsP/InP quantum-well gain media. IEEE J. Quantum Electron. 38, 1384 (2002)

    ADS  Google Scholar 

  77. J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff, T. Erneux, Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers. Opt. Commun. 201, 129 (2002)

    ADS  Google Scholar 

  78. J. Albert, G. van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs. Opt. Commun. 248, 527 (2005)

    ADS  Google Scholar 

  79. B.S. Ryvkin, E.A. Avrutin, M. Pessa, Polarization-dependent intersubband absorption saturation and its effect on polarization selection in vertical cavity surface-emitting lasers. J. Appl. Phys. 93, 2353 (2003)

    ADS  Google Scholar 

  80. B.S. Ryvkin, E.A. Avrutin, M. Pessa, Spontaneous emission, light-current characteristics, and polarization bistability range in vertical-cavity surface-emitting lasers. J. Appl. Phys. 94, 4267 (2003)

    ADS  Google Scholar 

  81. B.S. Ryvkin, E.A. Avrutin, A.C. Walker, Photon energy dependence of the sign of the current-induced absorption polarization sensitivity in degenerate semiconductors. Appl. Phys. Lett. 78, 2655 (2001)

    ADS  Google Scholar 

  82. B.S. Ryvkin, E.A. Avrutin, A.C. Walker, Current-directionality-induced giant absorption dichroism in III-V semiconductors and its potential for polarization control in vertical cavity surface-emitting lasers. J. Appl. Phys. 91, 3516 (2002)

    ADS  Google Scholar 

  83. H. Kawaguchi, I.H. White, M.J. Offside, J.E. Carroll, Ultrafast switching in polarization-bistable laser-diodes. Opt. Lett. 17, 130 (1992)

    ADS  Google Scholar 

  84. A. Valle, L. Pesquera, K.A. Shore, Polarization behaviour of birefringent multitransverse mode vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 9, 557 (1997)

    ADS  Google Scholar 

  85. M. San Miguel, Q. Feng, J.V. Moloney, Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728 (1995)

    ADS  Google Scholar 

  86. A. Tackeuchi, Y. Nishikawa, O. Wada, Room-temperature electron spin dynamics in GaAs/ AlGaAs quantum wells. Appl. Phys. Lett. 68, 797 (1996)

    ADS  Google Scholar 

  87. A. Tackeuchi, O. Wada, Y. Nishikawa, Electron spin relaxation in InGaAs/InP multiple-quantum wells. Appl. Phys. Lett. 70, 1131 (1997)

    ADS  Google Scholar 

  88. S. Akasaka, S. Miyata, T. Kuroda, A. Tackeuchi, Exciton spin relaxation dynamics in InGaAs/InP quantum wells. Appl. Phys. Lett. 85, 2083 (2004)

    ADS  Google Scholar 

  89. M.I. D’yakonov, V.I. Perel, Optical orientation in a system of electrons and lattice nuclei in semiconductors: theory. Zh. Eksp. Teor. Fiz. 65, 362 (1973)

    Google Scholar 

  90. M.I. D’yakonov, V.I. Perel, Optical orientation in a system of electrons and lattice nuclei in semiconductors. Sov. Phys. JETP 38, 177 (1974)

    ADS  Google Scholar 

  91. R.J. Elliott, Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266 (1954)

    ADS  MATH  Google Scholar 

  92. Y. Yafet, g factors and spin-lattice relaxation of conduction electrons, in Solid State Physics, vol. 14, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1963), pp. 1–98

    Google Scholar 

  93. G.L. Bir, A.G. Aronov, G.E. Pikus, Spin relaxation of electrons scattered by holes. Zh. Eksp. Teor. Fiz. 69, 1382 (1975)

    Google Scholar 

  94. G.L. Bir, A.G. Aronov, G.E. Pikus, Spin relaxation of electrons scattered by holes. Sov. Phys. JETP 42, 705 (1976)

    ADS  Google Scholar 

  95. T. Adachi, Y. Ohno, R. Terauchi, F. Matsukura, H. Ohno, Mobility dependence of electron spin relaxation time in n-type InGaAs/InAlAs multiple quantum wells. Physica E 7, 1015 (2000)

    Google Scholar 

  96. K. Jarasiunas, V. Gudelis, R. Aleksiejunas, M. Sudzius, S. Iwamoto, M. Nishioka, T. Shimura, K. Kuroda, Y. Arakawa, Picosecond dynamics of spin-related optical nonlinearities in \(\hbox{In}_x \hbox{Ga}_{1-x}\) As multiple quantum wells at 1064 nm. Appl. Phys. Lett. 84, 1043 (2004)

    Google Scholar 

  97. J. Martin-Regalado, M. San Miguel, N.B. Abraham, F. Prati, Polarization switching in quantum-well vertical-cavity surface-emitting lasers. Opt. Lett. 21, 351 (1996)

    ADS  Google Scholar 

  98. J. Martin-Regalado, F. Prati, M. San Miguel, N.B. Abraham, Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron 33, 765 (1997)

    ADS  Google Scholar 

  99. M. Travagnin, M.P. van Exter, A.K. Jansen van Doorn, J.P. Woerdman, Role of optical anisotropies in the polarization properties of surface-emitting semiconductor lasers. Phys. Rev. A 54, 1647 (1996)

    ADS  Google Scholar 

  100. C. Serrat, N.B. Abraham, M. San Miguel, R. Vilaseca, J. Martin-Regalado, Polarization dynamics in a vertical-cavity laser with an axial magnetic field. Phys. Rev. A 53, R3731 (1996)

    ADS  Google Scholar 

  101. M. Travagnin, Linear anisotropies and polarization properties of vertical-cavity surface-emitting semiconductor lasers. Phys. Rev. A 56, 4094 (1997)

    ADS  Google Scholar 

  102. H.F. Hofmann, O. Hess, Quantum noise and polarization fluctuations in vertical-cavity surface-emitting lasers. Phys. Rev. A 56, 868 (1997)

    ADS  Google Scholar 

  103. H. van der Lem, D. Lenstra, Saturation-induced frequency shift in the noise spectrum of a birefringent vertical-cavity surface emitting laser. Opt. Lett. 22, 1698 (1997)

    ADS  Google Scholar 

  104. M.P. van Exter, R.F.M. Hendriks, J.P. Woerdman, Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers. Phys. Rev. A 57, 2080 (1998)

    ADS  Google Scholar 

  105. S. Balle, E. Tolkachova, M. San Miguel, J.R. Tredicce, J. Martin-Regalado, A. Gahl, Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics. Opt. Lett. 24, 1121 (1999)

    ADS  Google Scholar 

  106. J. Martin-Regalado, S. Balle, M. San Miguel, Polarization and transverse-mode dynamics of gain-guided vertical-cavity surface-emitting lasers. Opt. Lett. 22, 460 (1997)

    ADS  Google Scholar 

  107. J. Martin-Regalado, S. Balle, M. San Miguel, A. Valle, L. Pesquera, Polarization and transverse-mode selection in quantum-well vertical-cavity surface-emitting lasers: index and gain-guided devices. J. Opt. B. Quantum Semiclass. Opt. 9, 713 (1997)

    ADS  Google Scholar 

  108. J. Mulet, S. Balle, Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects. IEEE J. Quantum Electron. 38, 291 (2002)

    ADS  Google Scholar 

  109. M.S. Torre, C. Masoller, P. Mandel, Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers. Phys. Rev. A 74, 043808 (2006)

    ADS  Google Scholar 

  110. C. Masoller, M.S. Torre, K.A. Shore, Polarization dynamics of current-modulated vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 43, 1074 (2007)

    ADS  Google Scholar 

  111. F. Prati, G. Giacomelli, F. Marin, Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise. Phys. Rev. A 62, 033810 (2000)

    ADS  Google Scholar 

  112. D. Burak, J.V. Moloney, R. Binder, Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers. Phys. Rev. A 61, 053809 (2000)

    ADS  Google Scholar 

  113. D. Burak, J.V. Moloney, R. Binder, Macroscopic versus microscopic description of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 36, 956 (2000)

    ADS  Google Scholar 

  114. G. van der Sande, J. Danckaert, I. Veretennicoff, K. Panajotov, S. Balle, Analytical approximation for the quantum-well gain and refractive-index spectra of vertical-cavity surface-emitting lasers including the effect of uniaxial planar stress. Phys. Rev. A 71, 063801 (2005)

    ADS  Google Scholar 

  115. R.F.M. Hendriks, M.P. van Exter, J.P. Woerdman, How the carrier momentum influences the polarization properties of a vertical-cavity semiconductor laser. Phys. Rev. A 59, 765 (1999)

    ADS  Google Scholar 

  116. F. Prati, L. Fratta, M. Travagnin, Band model for light-polarization selection in unstrained quantum-well vertical-cavity surface-emitting laser. Phys. Rev. A 62, 033819 (2000)

    ADS  Google Scholar 

  117. F. Prati, P. Caccia, F. Castelli, Effects of gain saturation on polarization switching in vertical-cavity semiconductor lasers. Phys. Rev. A 66, 063811 (2002)

    ADS  Google Scholar 

  118. T. Erneux, J. Danckaert, K. Panajotov, I. Veretennicoff, Two-variable reduction of the San Miguel–Feng–Moloney model for vertical-cavity surface-emitting lasers. Phys. Rev. A 59, 4660 (1999)

    ADS  Google Scholar 

  119. F. Prati, P. Caccia, M. Bache, F. Castelli, Analysis of elliptically polarized states in vertical-cavity surface-emitting lasers. Phys. Rev. A 69, 033810 (2004)

    ADS  Google Scholar 

  120. C. Masoller, M.S. Torre, P. Mandel, Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers. J. Appl. Phys. 99, 026106 (2006)

    ADS  Google Scholar 

  121. J. Paul, C. Masoller, P. Mandel, Y.H. Hong, P.S. Spencer, K.A. Shore, Experimental and theoretical study of dynamical hysteresis and scaling laws in the polarization switching of vertical-cavity surface-emitting lasers. Phys. Rev. A 77, 043803 (2008)

    ADS  Google Scholar 

  122. M.S. Torre, C. Masoller, Polarization-resolved modulation response of single-transverse-mode vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 45, 206 (2009)

    ADS  Google Scholar 

  123. J. Mulet, C.R. Mirasso, M. San Miguel, Polarization resolved intensity noise in vertical-cavity surface-emitting lasers. Phys. Rev. A 64, 023817 (2001)

    ADS  Google Scholar 

  124. J.M. Liu, Y.C. Chen, Digital optical signal-processing with polarization-bistable semicon- ductor-lasers. IEEE J. Quantum Electron. 21, 298 (1985)

    ADS  Google Scholar 

  125. T. Mori, Y. Yamayoshi, H. Kawaguchi, Low-switching-energy and high-repetition-frequency all-optical flip-flop operation of polarization bistable vertical-cavity surface-emitting laser. Appl. Phys. Lett. 88, 101102 (2006)

    ADS  Google Scholar 

  126. T. Mori, Y. Sato, H. Kawaguchi, Timing jitter reduction by all-optical signal regeneration using a polarization bistable VCSEL. J. Lightwave Technol. 26, 2946 (2008)

    ADS  Google Scholar 

  127. H. Kawaguchi, T. Mori, Y. Sato, Y. Yamayoshi, Optical buffer memory using polarization-bistable vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phys. 45, L894 (2006)

    ADS  Google Scholar 

  128. J. Rudolph, S. Döhrmann, D. Hägele, M. Oestreich, W. Stolz, Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons. Appl. Phys. Lett. 87, 241117 (2005)

    ADS  Google Scholar 

Download references

Acknowledgments

Some of the works presented in this chapter have been undertaken with other past and present colleagues, as acknowledged via the relevant reference citations. KP wishes to acknowledge the FWO (Fund for Scientific Research - Flanders) and the Research Council (OZR) of the Vrije Universiteit Brussel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir Panajotov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panajotov, K., Prati, F. (2013). Polarization Dynamics of VCSELs. In: Michalzik, R. (eds) VCSELs. Springer Series in Optical Sciences, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24986-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24986-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24985-3

  • Online ISBN: 978-3-642-24986-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics