Skip to main content

Unified Strength Theory and its Material Parameters

  • Chapter
Computational Plasticity

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Great effort has been devoted to the formulation of strength theories, failure criteria and yield criteria. Many versions of these were presented during the past 100 years. The single-shear criterion Maximum shear criterion (Tresca, 1864), the Huber-von Mises criterion (1904; 1913) and the twin-shear criterion (Yu 1961a; Yu 1983) can be suitable for those materials that have identical strength both in tension and compression. For these materials the shear yield stresses are τy=0.5 σy, τy=0.577 σy and τy=0.667 σy, respectively, where τy is the shear yield strength and σy is the uniaxial yield strength of materials. The Drucker-Prager criterion contradicts the experimental results of geomaterials. The single-shear theory (Mohr-Coulomb strength theory, 1900) and the twin-shear strength theory (Yu, 1985) are two bounds of the convex strength theory. Each one mentioned above is suitable for only a certain kind of material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach H and Kolupaev VA (2008) Remarks on Model of Mao-Hong Yu. The Eighth International Conference on Fundamentals of Fracture (ICFF VIII), Tong Yi Zhang, Biao Wang and Xi-Qiao Feng eds, pp 270–271.

    Google Scholar 

  • Besseling JF and van der Giessen E (1994) Mathematical Modelling of Inelastic Deformation. Chapman & Hall: London.

    Google Scholar 

  • Chen WF (1982) Plasticity in Reinforced Concrete. McGraw-Hill: New York.

    Google Scholar 

  • Chen WF and Saleeb AF (1994) Constitutive Equations for Engineering Materials. Vol.1: Elasticity and Modeling, Revised edn. Elsevier: Amsterdam. pp 259–304, 462–489.

    Google Scholar 

  • Chen W.F et al. (1994) Constitutive Equations for Engineering Materials. Vol. 2: Plasticity and Modeling. Elsevier: Amsterdam.

    Google Scholar 

  • Chen WF (1998) Concrete Plasticity: Past, Present and Future. In: Strength Theory: Application, Development and Prospects for 21st Century. Science Press: Beijing, New York, 1998, pp 7–48.

    Google Scholar 

  • Drucker D.C and Prager W (1952) Soil mechanics and plastic analysis for limit design. Quart. Appl. Math., 10: 157–165.

    Google Scholar 

  • Fan SC and Qiang HF (2001) Normal high-velocity impact concrete slabs-a simulation using the meshless SPH procedures. Computational Mechanics—New Frontiers for New Millennium. Valliappan S and Khalili N eds. Elsevier: Amsterdam, pp 1457–1462.

    Google Scholar 

  • Fan SC, Yu MH and Yang SY (2001) On the unification of yield criteria. J. of Applied Mechanics, ASME, 68: 341–343.

    Article  Google Scholar 

  • Haythornthwaite RM (1961) Range of yield condition in ideal plasticity. J. Eng. Mech. ASCE, 87(6): 117–133.

    Google Scholar 

  • Haigh BT (1920) The strain energy function and the elastic limit. Engineering, 109: 158–160.

    Google Scholar 

  • Hencky H (1925) Ueber das Wesen der plastischen Verformung (The nature of plastic deformation). Zeitschrift des Vereines Deutscher Ingenieure, 69(20), May 16–Sept 26 (in German)

    Google Scholar 

  • Huber MT (1904) Przyczynek do podstaw wytorymalosci. Czasopismo Technizne, 22:81, (Lwow, 1904; Pisma, 2, PWN, Warsaw, 1956).

    Google Scholar 

  • Meyer WJ (1985) Concepts of Mathematical Modeling. McGraw-Hill Book Company.

    Google Scholar 

  • von Mises R (1913) Mechanick der festen Körper im plastisch deformablen Zustand. Nachrichten von der Königlichen Gesellschaft der wissenschaften zu Göettinger. Mathematisch-Physikalische Klasse, pp 582–592.

    Google Scholar 

  • Mohr O (1900) Welche Umstande bedingen die Elastizitatsgrenze und den Bruch eines Materials. Zeitschrift des Vereins deutscher Ingenieure, 44: 1524–1530; 1572-1577.

    Google Scholar 

  • Mohr O (1905) Abhandlungen aus den Gebiete der Technischen Mechanik. Verlag von Wilhelm Ernst and Sohn, 1905, 1913, Third edn. 1928.

    Google Scholar 

  • Nadai A (1931) Plasticity. McGraw-Hill: New York.

    Google Scholar 

  • Paul B (1961) A modification of the Coulomb-Mohr theory of fracture. J. Appl. Mech, 28: 259–268.

    Article  CAS  Google Scholar 

  • Pisarenko GS and Lebedev AA (1976) Deformation and strength of material under complex stressed state. Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Shen ZJ (2004) Reviews to “Unified Strength Theory and Its Applications”. Advances in Mechanics, 34(4):562–563. (in Chinese)

    Google Scholar 

  • Tayler AB (1986) Mathematical Models in Applied mechanics. Clarendon Press: Oxford.

    Google Scholar 

  • Teodorescu PP (2006) Review of Unified strength theory and its Applications. Springer, Berlin, 2004”. Zentralblatt MATH 2006, Cited in Zbl. Reviews, 1059.74002 (02115115).

    Google Scholar 

  • Tresca H (1864) Sur l’ecoulement des corps solides soumis a de fortes pression. Comptes Rendus hebdomadaires des Seances de l’Academie des Sciences, Rend, 59: 754–758.

    Google Scholar 

  • Westergaard HM (1920) On the resistance of ductile materials to combined stresses. J. Franklin Inst., 189: 627–640.

    Article  Google Scholar 

  • Wu KKS, Lahav O and Rees MJ (1999) The large-scale smoothness of the Universe. Nature, 397: 225–230.

    Article  CAS  Google Scholar 

  • Yu MH (1961a) General behaviour of isotropic yield function. Res. Report of Xi’an Jiaotong University. Xi’an, China (in Chinese)

    Google Scholar 

  • Yu MH (1961b) Plastic potential and flow rules associated singular yield criterion (in Chinese). Res. Report of Xi’an Jiaotong University. Xi’an, China.

    Google Scholar 

  • Yu MH (1983) Twin shear stress yield criterion. Int. J. Mech. Sci., 25(1): 71–74.

    Article  Google Scholar 

  • Yu MH, He LN and Song LY (1985) Twin shear stress theory and its generalization. Scientia Sinica (Sciences in China), English edn. Series A, 28(11): 1174–1183.

    Google Scholar 

  • Yu MH and Liu FY (1988) Twin shear three-parameter criterion and its smooth ridge model. China Civil Engng. J., 21(3): 90–95 (in Chinese, English abstract).

    Google Scholar 

  • Yu MH and He LN (1991) A new model and theory on yield and failure of materials under complex stress state. In: Mechanical Behariour of Materials-6, Vol. 3: Pergamon Press: Oxford, pp 841–846.

    Google Scholar 

  • Yu MH (1992a) A new system of strength theory. Xian Jiaotong University Press: Xi’an (in Chinese).

    Google Scholar 

  • Yu MH (1994) Unified strength theory for geomaterials and its application. Chinese J. of Geotech. Eng., 16(2): 1–10 (in Chinese, English Abstract).

    Google Scholar 

  • Yu Mao-hong. (1998) Twin-shear Theory and Its Applications. Science Press: Beijing (in Chinese).

    Google Scholar 

  • Yu MH (2002a) Concrete Strength Theory and Its Applications. Higher Education Press: Beijing.

    Google Scholar 

  • Yu MH (2002b) Advances in strength theories for materials under complex stress state in the 20th Century. Applied Mechanics Reviews ASME, 55(3): 169–218.

    Article  Google Scholar 

  • Yu MH, Zan YW, Zhao J and Yoshimine M (2002) A unified strength criterion for rock. Int. J. of Rock Mechanics and Mining Science, 39: 975–989.

    Article  Google Scholar 

  • Yu MH (2004) Unified Strength Theory and its Applications. Springer: Berlin.

    Book  Google Scholar 

  • Yu MH, Xia GY, Kolupaev VA (2009) Basic characteristics and development of yield criteria for geomaterials. Journal of Rock Mechanics and Geotechnical Engineering, 1(1): 71–88.

    Google Scholar 

  • Zhang CQ, Zhou H, Feng XT (2008) Numerical format of elastoplastic constitutive model based on the unified strength theory in FLAC∼(3D). Rock and Soil Mechanics, 29(3): 596–602 (in Chinese, English Abstract).

    CAS  Google Scholar 

  • Zhang LY (2005) The 3D images of geotechnical constitutive models in the stress space. Chinese J. of Geotechnical Engineering, 27(1):64–68.

    Google Scholar 

  • Zhang XS, Guan H, Loo YC (2001) UST failure criterion for punching shear analysis of reinforcement concrete slab-column connections. Computational Mechanics-New Frontiers for New Millennium. Valliappan S and Khalili N eds. Elsevier: Amsterdam, pp 299–304.

    Google Scholar 

  • Zienkiewicz OC and Pande GN (1977) Some useful forms of isotropic yield surfaces for soil and rock mechanics. Finite Elements in Geomechanics. Gudehus G ed. Wiley: London, pp 179–190.

    Google Scholar 

  • Zyczkowski M (1981) Combined Loadings in the Theory of Plasticity. Polish Scientific Publishers: PWN and Nijhoff.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, MH., Li, JC. (2012). Unified Strength Theory and its Material Parameters. In: Computational Plasticity. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24590-9_4

Download citation

Publish with us

Policies and ethics