Skip to main content

Combinatorial Framework for Topological Quantum Computing

  • Chapter
  • First Online:
Quantum Triangulations

Part of the book series: Lecture Notes in Physics ((LNP,volume 845))

  • 1723 Accesses

Abstract

Unlike perturbatively renormalizable quantum field theory—representing the basic tool in the standard model in particle physics, where the physically measurable quantities are obtained as finite limits of infinite series in the physical coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that this scheme is the quantum version of the classical Boolean circuit in which strings written in the basic binary alphabet (0,1) are replaced by collections of ‘qubits’, namely quantum states in \(({\mathbb{C}}^{2})^{\otimes N},\) and the gates are unitary transformations that can be expressed, similarly to what happens in the classical case, as suitable sequences of elementary gates associated with the Boolean logic operations and, or, not.

  2. 2.

    It has been recently proposed to describe topological phases of matter and anyonic-type vertex operators within a Turaev–Viro background [31, 32]. Such a proposal seems quite promising but at present only a few features of this approach have been worked out, so that we have not included it in this monography.

References

  1. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: Kleinberg, J.M. (ed.) Proceedings of STOC 2006: 38th ACM Symposium on Theory of Computing, pp. 427–436 (2006)

    Google Scholar 

  2. Anshel, I., Anshel, M.M., Goldfeld, D.: An algebraic method for public-key cryptography. Math. Res. Lett 6, 287–291 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics, Theory and applications. In: Rota G.-C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 8, Addison–Wesley, Reading (1981)

    Google Scholar 

  4. Biedenharn, L.C., Louck, J.D.: The Racah–Wigner algebra in quantum theory. In: Rota G.-C. (ed.) Encyclopedia of Mathematics and its Applications, vol. 9, Addison–Wesley, Reading (1981)

    Google Scholar 

  5. Birman, J.S.: Braids, Links, and Mapping Class Groups. Princeton University Press, Princeton (1974)

    Google Scholar 

  6. Birman J.S., Brendle T.E.: Braids: a survey. In: Menasco, W., Thistlethwaite, M.B. (eds.) Handbook of Knot Theory. Elsevier, Amsterdam (2005) (eprint arXiv: math.GT/0409205)

    Google Scholar 

  7. Bordewich, M., Freedman, M., Lovász, L., Welsh, D.: Approximate counting and quantum computation. Comb. Probab. Comput. 14, 737–754 (2005)

    Article  MATH  Google Scholar 

  8. Carfora, M., Marzuoli, A., Rasetti, M.: Quantum tetrahedra. J. Phys. Chem. A 113, 15376–15383 (2009)

    Article  Google Scholar 

  9. Carlip, S.: Quantum Gravity in 2+1 Dimensions. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  10. Das Sarma, S., Freedman, M., Nayak, C., Simon, S.H., Stern, A.: Non-Abelian anyons and topological quantum computation. rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Drinfel’d, V.G.: Quantum groups. In: Proceedings of ICM 1986. pp. 798-820. American Mathematical Society, Providence, RI (1987)

    Google Scholar 

  12. Fack, V., Lievens, S., Vander Jeugt, J.: On the diameter of the rotation graph of binary coupling trees. Discr. Math. 245, 1–18 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  14. Freedman, M.H: P/NP and the quantum field computer. Proc. Natl. Acad. Sci. USA 95, 98–101 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Freedman, M.H., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull. Amer. Math. Soc. 40, 31–38 (2002)

    Article  MathSciNet  Google Scholar 

  16. Freedman, H.M., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computer. Commun. Math. Phys. 227, 587–603 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Freedman, H.M., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Freyd, P., Yetter, D., Hoste, J., Lickorish, W., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. 12, 239–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garey, M.R., Johnson, D.S: Computers and Intractability, A Guide to the Theory of NP-completeness. Freeman and Co, New York (1979)

    MATH  Google Scholar 

  20. Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum computation of universal link invariants. Open Sys. Inf. Dyn. 13, 373–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum kinitting. Laser Phys. 16, 1582–1594 (2006)

    Article  ADS  Google Scholar 

  22. Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum automata, braid group and link polynomials. Quant. Inform. Comp. 7, 479–503 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Garnerone, S., Marzuoli, A., Rasetti, M.: Quantum geometry and quantum algorithms. J. Phys. A. Math. Theor. 40, 3047–3066 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Garnerone, S., Marzuoli, A., Rasetti, M.: Efficient quantum processing of 3-manifolds topological invariants. Adv. Theor. Math. Phys. 13, 1–52 (2009)

    MathSciNet  Google Scholar 

  25. Gomez, C., Ruiz-Altaba, M., Sierra, G.: Quantum Group in Two-dimensional Physics. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  26. Guadagnini, E.: The link invariants of the Chern–Simons field theory. W. de Gruyter, Berlin (1993)

    Book  MATH  Google Scholar 

  27. Harrow, A.W., Recht, B., Chuang, I.L: Efficient discrete approximations of quantum gates. J. Math. Phys. 43, 4445–4451 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Jaeger, F., Vertigan, D.L., Welsh, D.J A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–53 (1990)

    Google Scholar 

  29. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. 12, 103–111 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones, V.F.R: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)

    Article  MATH  Google Scholar 

  31. Kádár, Z., Marzuoli, A., Rasetti, M.: Braiding and entanglement in spin networks: A combinatorial approach to topological phases. Int. J. Quant. Inf. 7(Suppl), 195–203 (2009)

    Article  Google Scholar 

  32. Kádár, Z., Marzuoli, A., Rasetti, M.: Microscopic description of 2D topological phases, duality and 3D state sums. Adv. Math. Phys. 2010, 671039 (2010)

    Google Scholar 

  33. Kauffman, L.: Knots and physics. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  34. Kauffman, L.H., Lomonaco, J.S.: Topology and quantum computing. In: Entanglement and Decoherence, Lect. Notes Phys. vol. 768, pp. 87–156. Springer (2009)

    Google Scholar 

  35. Kaul, R.K: Chern–Simons theory, colored oriented braids and link invariants. Commun. Math. Phys. 162, 289–319 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Kaul, R.K.: Chern–Simons theory, knot invariants, vertex models and three-manifold invariants. In: Kaul, R.K. et al. (eds.) Horizons in World Physics, vol. 227, Nova Science Publ. (1999)

    Google Scholar 

  37. Kirby, R., Melvin, P.: The 3-manifold invariant of Witten and Reshetikhin–Turaev for \(sl(2, {\mathbb{C}}).\) Invent. Math. 105, 437–545 (1991)

    Google Scholar 

  38. Kirillov, A.N., Reshetikhin, N.Y.: Infinite dimensional Lie algebras and groups. In: Kac, V.G. (ed.) Infinite dimensional Lie algebras and groups, Adv. Ser. in Math. Phys., vol. 7, pp. 285–339 (1988)

    Google Scholar 

  39. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Kohno, T.: Hecke algebra representations of braid groups and classical Yang–Baxter equations. Adv. Stud. Pure Math., vol. 16, pp. 255–269. Academic Press, Boston, MA (1988)

    Google Scholar 

  41. Lickorish, W.B.R.: An Introduction to Knot Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  42. Lloyd, S.: A theory of quantum gravity based on quantum computation. eprint quant-ph/ 0501135v8 (2005)

    Google Scholar 

  43. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group theory, 2nd edn. Dover Publications, New York (1976)

    Google Scholar 

  44. Marzuoli, A., Palumbo, G.: Post-quantum cryptography from mutant prime knots. arXiv: 1010.2055v1 [math-ph]

    Google Scholar 

  45. Marzuoli, A., Rasetti, M.: Spin network quantum simulator. Phys. Lett. A 306, 79–87 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Marzuoli, A., Rasetti, M.: Computing spin networks. Ann. Phys. 318, 345–407 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  48. Ohtsuki, T. (ed.): Problems on invariants of knots and 3-manifolds, RIMS Geometry and Topology Monographs, vol. 4 (eprint arXiv: math.GT/0406190)

    Google Scholar 

  49. Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch, F. et al. (eds.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North-Holland, Amsterdam (1968)

    Google Scholar 

  50. Preskill, J.: Topological quantum computing for beginners. http://online.kitp.ucsb.edu.online/exotic_c04/preskill/ (2004)

  51. Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Knot invariants from rational conformal field theories. Nucl. Phys. B 422, 291–306 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Rolfsen, D.: Knots and Links. Publish or Perish, Berkeley (1976)

    MATH  Google Scholar 

  54. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  55. Wiesner, K., Crutchfield, J.P.: Computation in finitary stocastic and quantum processes. Physica D 237, 1175–1195 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  56. Witten, E.: (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 49–78 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  57. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory. Quant. Inform. Comp. 8, 147–180 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yutsis, A.P., Levinson, I.B., Vanagas, V.V.: The Mathematical Apparatus of the Theory of Angular Momentum. Israel Program for Sci. Transl. Ltd., Jerusalem (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carfora, M., Marzuoli, A. (2012). Combinatorial Framework for Topological Quantum Computing. In: Quantum Triangulations. Lecture Notes in Physics, vol 845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24440-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24440-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24439-1

  • Online ISBN: 978-3-642-24440-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics