Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2043))

  • 874 Accesses

Abstract

Because a plasma is a fluid, its evolution must satisfy the equations of fluid dynamics. But because the fluid is composed of electrons and one or more species of ions, the charges on these particles act as sources of an electromagnetic field, which is governed by Maxwell’s equations. The presence of this intrinsic field leads to highly nonlinear behavior; and in fact, the dominance of long-range electromagnetic interactions over the short-range interatomic or intermolecular forces is often cited as the defining characteristic of the plasma state. In order to construct a mathematically rigorous model for the plasma which is also accessible to analysis, hypotheses must be imposed which control these nonlinearities. In Sect. 3.6 we assumed that the pressure on the plasma was zero and that magnetic forces dominated over other forces. Those hypotheses reduced the governing equations to the Beltrami equations (3.62), (3.65). In this section we impose a similar physical hypothesis: that the temperature of the plasma is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allis, W.P: Waves in a plasma, Mass. Inst. Technol. Research Lab. Electronics Quart. Progr. Rep. 54(5) (1959)

    Google Scholar 

  2. Astrom, E.O.: Waves in an ionized gas. Arkiv. Fysik 2, 443 (1950)

    MathSciNet  Google Scholar 

  3. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)

    MATH  Google Scholar 

  4. Cibrario, M.: Intorno ad una equazione lineare alle derivate parziali del secondo ordine di tipe misto iperbolico-ellittica. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., Ser. 2 3(3, 4), 255–285 (1934)

    Google Scholar 

  5. Czechowski, A., Grzedzielski, S.: A cold plasma layer at the heliopause. Adv. Space Res. 16, 321–325 (1995)

    Article  Google Scholar 

  6. Didenko, V.P.: On the generalized solvability of the Tricomi problem. Ukrain. Math. J. 25, 10–18 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Diff. Equations 7, 77–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  9. Grossman, W., Weitzner, H.: A reformulation of lower-hybrid wave propagation and absorption. Phys. Fluids, 27, 1699–1703 (1984)

    Article  Google Scholar 

  10. Gu, C.: On partial differential equations of mixed type in n independent variables. Commun. Pure Appl. Math. 34, 333–345 (1981)

    Article  MATH  Google Scholar 

  11. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory and Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Killian, T.C.,Pattard, T., Pohl, T., Rost, J.M.: Ultracold neutral plasmas. Phys. Rep. 449, 77–130 (2007)

    Google Scholar 

  13. W. S. Kurth, Waves in space plasmas, e–note (n.d.).http://www-pw.physics.uiowa.edu/plasma-wave/tutorial/waves.html. Cited 2 Aug 2011

  14. Lazzaro, E., Maroli, C.: Lower hybrid resonance in an inhomogeneous cold and collisionless plasma slab. Nuovo Cim. 16B, 44–54 (1973)

    Article  Google Scholar 

  15. Lupo, D., Morawetz, C.S., Payne, K.R.: On closed boundary value problems for equations of mixed elliptic-hyperbolic type. Commun. Pure Appl. Math. 60, 1319–1348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lupo, D., Morawetz, C.S., Payne, K.R.: Erratum: “On closed boundary value problems for equations of mixed elliptic-hyperbolic type,” [Commun. Pure Appl. Math. 60, 1319–1348 (2007)]. Commun. Pure Appl. Math. 61, 594 (2008)

    Google Scholar 

  17. Lupo, D., Payne, K.R.: A dual variational approach to a class of nonlocal semilinear Tricomi problems. Nonlinear Differential Equations Appl. 6, 247–266 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lupo, D., Payne, K.R.: Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types. Commun. Pure Appl. Math. 56, 403–424 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. McDonald, K.T.: An electrostatic wave. arXiv:physics/0312025v1

    Google Scholar 

  20. Morawetz, C.S.: Mixed equations and transonic flow. Rend. Mat. 25, 1–28 (1966)

    Google Scholar 

  21. Morawetz, C.S., Stevens, D.C., Weitzner, H.: A numerical experiment on a second-order partial differential equation of mixed type. Commun. Pure Appl. Math. 44, 1091–1106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Natick (1997)

    MATH  Google Scholar 

  23. Otway, T.H.: A boundary-value problem for cold plasma dynamics. J. Appl. Math. 3, 17–33 (2003)

    Article  MathSciNet  Google Scholar 

  24. Otway, T.H.: Energy inequalities for a model of wave propagation in cold plasma. Publ. Mat. 52, 195–234 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Otway, T.H.: Mathematical aspects of the cold plasma model. In: Duan, J., Fu, X., Yang, Y. (eds.) Perspectives in Mathematical Sciences, pp. 181–210. World Scientific Press, Singapore (2010)

    Chapter  Google Scholar 

  26. Otway, T.H.: Unique solutions to boundary value problems in the cold plasma model. SIAM J. Math. Anal. 42, 3045–3053 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Piliya, A.D., Fedorov, V.I.: Singularities of the field of an electromagnetic wave in a cold anisotropic plasma with two-dimensional inhomogeneity. Sov. Phys. JETP 33, 210–215 (1971)

    Google Scholar 

  28. Sitenko, A.G., Stepanov, K.N.: On the oscillations of an electron plasma in a magnetic field. Z. Eksp. Teoret. Fiz. [in Russian] 31, 642 (1956) [Sov. Phys. JETP, 4, 512 (1957)]

    Google Scholar 

  29. Tonks, L., Langmuir, I.: Oscillations of ionized gases. Phys. Rev. 33, 195–210 (1929)

    Google Scholar 

  30. Weitzner, H.: “Wave propagation in a plasma based on the cold plasma model.” Courant Inst. Math. Sci. Magneto-Fluid Dynamics Div. Report MF–103, August, 1984

    Google Scholar 

  31. Weitzner, H.: Lower hybrid waves in the cold plasma model. Commun. Pure Appl. Math. 38, 919–932 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yamamoto, Y.: Existence and uniqueness of a generalized solution for a system of equations of mixed type. Ph.D. thesis, Polytechnic University of New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otway, T.H. (2012). The Cold Plasma Model. In: The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type. Lecture Notes in Mathematics(), vol 2043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24415-5_4

Download citation

Publish with us

Policies and ethics