Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2043))

Abstract

Although the study of mixed elliptic–hyperbolic equations goes back at least toRiemann’s computation of the Laplacian in toroidal coordinates (c.f. [47] or p. 461, (B) of [7]), the first systematic study of well-posedness for boundary value problemsappears to be the memoir by Tricomi [50]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S., Nirenberg, L., Protter, M.H.: A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic–hyperbolic type. Commun. Pure Appl. Math. 6, 455–470 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aly, J.J.: On the uniqueness of the determination of the coronal potential magnetic field from line-of-sight boundary conditions. Solar Phys. 111, 287–296 (1987)

    Article  Google Scholar 

  3. Amari, T., Aly, J.J., Luciani, J.F., Boulmezaoud, T.Z., Mikic, Z.: Reconstructing the solar coronal magnetic field as a force-free magnetic field. Solar Phys. 174, 129–149 (1997)

    Article  Google Scholar 

  4. Amari, T., Boulbe, C., Boulmezaoud, T.Z.: Computing Beltrami fields. SIAM J. Sci. Comput. 31(5), 3217–3254 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Amari, T., Luciani, J.F., Mikick, Z.: Magnetohydrodynamic models of solar coronal magnetic fields. Plasma Phys. Control. Fusion 41, A779–A786 (1999)

    Article  Google Scholar 

  6. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator. Duke Math. J. 98, 465–483 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bateman, H.: Partial Differential Equations. Dover, New York (1944)

    MATH  Google Scholar 

  8. Berezanskii, Yu.M.: Energy inequalities for some classes of equations of mixed type [in Russian]. Dokl. Akad. Nauk SSSR 132, 9–12 (1960) [Soviet Math. Doklady 1, 447–451 (1960)]

    Google Scholar 

  9. Berezanskii, Yu.M.: Spaces with negative norms. Russian Math. Surveys 18(1), 63–95 (1963)

    Article  MathSciNet  Google Scholar 

  10. Berezanskii, Ju.M.: Expansions in Eigenfunctions of Selfadjoint Operators. American Mathematical Society, Providence (1968)

    Google Scholar 

  11. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)

    MATH  Google Scholar 

  12. Bitsadze, A.V.: Equations of the Mixed Type, Zador, P. (trans). Pergammon, New York (1964)

    Google Scholar 

  13. Boulmezaoud, T.A., Amari, T.: On the existence of non-linear force-free fields in three-dimensional domains. Z. Angew. Math. Phys. 51, 942–967 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Boulmezaoud, T-Z., Maday, Y., Amari, T.: On the linear force-free fields in bounded and unbounded three-dimensional domains. Math. Modelling Numer. Anal. 33, 359–393 (1999)

    Google Scholar 

  15. Čanić, S., Keyfitz, B.: An elliptic problem arising from the unsteady transonic small disturbance equation J. Diff. Equations 125, 548–574 (1996)

    Article  MATH  Google Scholar 

  16. Chen, S-X.: The fundamental solution of the Keldysh type operator, Science in China, Ser. A: Mathematics 52, 1829–1843 (2009)

    Article  MATH  Google Scholar 

  17. Cibrario, M.: Sulla riduzione a forma canonica delle equazioni lineari alle derivate parziali di secondo ordine di tipo misto. Rendiconti del R. Insituto Lombardo 65 (1932)

    Google Scholar 

  18. Cibrario, M.: Alcuni teoremi di esistenza e di unicita per l’equazione xz xx ,  + z yy  = 0. Atti R. Acc. Torino 68 (1932–1933)

    Google Scholar 

  19. Cibrario, M.: Intorno ad una equazione lineare alle derivate parziali del secondo ordine di tipe misto iperbolico-ellittica. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., Ser. 2 3(3, 4), 255–285 (1934)

    Google Scholar 

  20. Didenko, V.P.: On the generalized solvability of the Tricomi problem. Ukrain. Math. J. 25, 10–18 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  21. Flyer, N., Fornberg,B., Thomas, S., Low, B.C.: Magnetic field confinement in the solar corona. I. Force-free magnetic fields. Astrophys. J. 606, 1210–1222 (2004)

    Google Scholar 

  22. Frankl’, F.L.: Problems of Chaplygin for mixed sub- and supersonic flows [in Russian]. Izv. Akad. Nauk SSSR, ser. mat. 9(2), 121–143 (1945)

    Google Scholar 

  23. Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gellerstedt, S.: Quelques problèmes mixtes lour l’équation y m z xx  + z yy  = 0. Arkiv für Matematik, Astronomi och Fusik 26A(3), 1–32 (1937)

    Google Scholar 

  25. Grad, H., Rubin, H.: Hydromagnetic equilibria and force free fields. In: Proceedings of the 2nd International Conference on Peaceful Uses of Atomic Energy, vol. 31, p. 190. United Nations, Geneva (1958)

    Google Scholar 

  26. Hudson, S.R., Hole, M.J., Dewar, R.L.: Eigenvalue problems for Beltrami fields arising in a 3-D toroidal MHD equilibrium problem. Phys. Plasmas, 13 (2007)

    Google Scholar 

  27. Janhunen, P.: Magnetically dominated plasma models of ball lightning. Annales Geophysicae. Atmos. Hydrospheres Space Sci. 9, 377–380 (1991)

    Google Scholar 

  28. Katsanis, T.: Numerical techniques for the solution of symmetric positive linear differential equations. Ph.D. thesis, Case Institute of Technology (1967)

    Google Scholar 

  29. Katsanis, T.: Numerical solution of Tricomi equation using theory of symmetric positive differential equations. SIAM J. Numer. Anal. 6, 236–253 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  30. Keldysh, M.V.: On certain classes of elliptic equations with singularity on the boundary of the domain [in Russian]. Dokl. Akad. Nauk SSSR 77, 181–183 (1951)

    Google Scholar 

  31. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  32. Lupo, D., Morawetz, C.S., Payne, K.R.: On closed boundary value problems for equations of mixed elliptic-hyperbolic type. Commun. Pure Appl. Math. 60, 1319–1348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lupo, D., Morawetz, C.S., Payne, K.R.: Erratum: On closed boundary value problems for equations of mixed elliptic-hyperbolic type [Commun. Pure Appl. Math. 60, 1319–1348 (2007)]. Commun. Pure Appl. Math. 61, 594 (2008)

    Google Scholar 

  34. Lupo, D., Payne, K.R.: Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types. Commun. Pure Appl. Math. 56, 403–424 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Magnus, W., Oberhettinger, F.: Formulas and Theorems for the Special Functions of Mathematical Physics, J. Werner, trans. Chelsea, New York (1949)

    Google Scholar 

  36. Manwell, A.R.: On locally supersonic plane flows with a weak shock wave, J. Math. Mech. 16, 589–638 (1966)

    MATH  MathSciNet  Google Scholar 

  37. Manwell, A.R.: The Hodograph Equations. Hafner Publishing, New York (1971)

    MATH  Google Scholar 

  38. Morawetz, C.S.: Note on a maximum principle and a uniqueness theorem for an elliptic-hyperbolic equation. Proc. R. Soc. London, Ser. A 236, 141–144 (1956)

    Google Scholar 

  39. Morawetz, C.S.: Non-existence of transonic flow past a profile. Commun. Pure Appl. Math. 17, 357–367 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  40. Morawetz, C.S., Stevens, D.C., Weitzner, H.: A numerical experiment on a second-order partial differential equation of mixed type. Commun. Pure Appl. Math. 44, 1091–1106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    MATH  Google Scholar 

  42. Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Natick (1997)

    MATH  Google Scholar 

  43. Otway, T.H.: A boundary-value problem for cold plasma dynamics. J. Appl. Math. 3, 17–33 (2003)

    Article  MathSciNet  Google Scholar 

  44. Otway, T.H.: Energy inequalities for a model of wave propagation in cold plasma. Publ. Mat. 52, 195–234 (2008)

    MATH  MathSciNet  Google Scholar 

  45. Otway, T.H.: Unique solutions to boundary value problems in the cold plasma model. SIAM J. Math. Anal. 42, 3045–3053 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, Berlin (2004)

    MATH  Google Scholar 

  47. Riemann, B.: Partielle Differentialgleichungen. Hattendorf’s (ed.) (1861)

    Google Scholar 

  48. Sorokina, N.G.: Strong solvability of the Tricomi problem [in Russian]. Ukrain. Mat. Zh. 18, 65–77 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sorokina, N.G.: Strong solvability of the generalized Tricomi problem [in Russian]. Ukrain. Mat. Zh. 24, 558–561 (1972) [Ukrainian Math. J. 24, 451–453 (1973)]

    Google Scholar 

  50. Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Rendiconti Atti dell’ Accademia Nazionale dei Lincei Ser. 5 14, 134–247 (1923)

    Google Scholar 

  51. Tsui, K.H.: A self-similar magnetohydrodynamic model for ball lightnings. Phys. Plasmas 13, 072102 (2006)

    Article  MathSciNet  Google Scholar 

  52. Tsui, K.H., Serbeto, A.: Time-dependent magnetohydrodynamic self-similar extragalactic jets. Astrophys. J. 658, 794–803 (2007)

    Article  Google Scholar 

  53. Weitzner, H.: “Wave propagation in a plasma based on the cold plasma model.” Courant Inst. Math. Sci. Magneto-Fluid Dynamics Div. Report MF–103, August, 1984

    Google Scholar 

  54. Wheatland, M.S.: Reconstruction of nonlinear force-free fields and solar flare prediction. In: Duldig, M. (ed.) Advances in Geosciences, vol. 8: Solar Terrestrial, pp. 123–137. World Scientific, Singapore (2006)

    Google Scholar 

  55. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otway, T.H. (2012). The Equation of Cinquini-Cibrario. In: The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type. Lecture Notes in Mathematics(), vol 2043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24415-5_3

Download citation

Publish with us

Policies and ethics