Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2043))

  • 869 Accesses

Abstract

The purpose of this chapter is to emphasize some standard material in functional analysis and the theory of partial differential equations which will be particularly useful in subsequent chapters. In addition, a brief survey of applications is given in Sect. 2.7. Specialists in partial differential equations may prefer to skip Sects. 2.1– 2.6 of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachman, G., Narici, L.: Functional Analysis. Academic Press, San Diego (1966)

    MATH  Google Scholar 

  2. Beirão de Veiga, H.: On non-Newtonian p-fluids. The pseudo-plastic case. J. Math. Anal. Appl. 344, 175–185 (2008)

    Google Scholar 

  3. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)

    MATH  Google Scholar 

  4. Bick, J.H., Newell, G.F.: A continuum model for two-dimensional traffic flow. Quart. Appl. Math. 18, 191–204 (1960)

    MATH  Google Scholar 

  5. N. Bîlă, N.: Application of symmetry analysis to a PDE arising in the car windshield design. SIAM J. Appl. Math. 65, 113–130 (2004)

    Google Scholar 

  6. Born, M., Infeld, L.: Foundation of a new field theory. Proc. R. Soc. London Ser. A 144, 425–451 (1934)

    Article  Google Scholar 

  7. Calabi, E.: Examples of Bernstein problems for some nonlinear equations, Proceedings of the Symposium on Global Analysis, pp. 223–230. University of California at Berkeley (1968)

    Google Scholar 

  8. Čanić, S., Keyfitz, B.: An elliptic problem arising from the unsteady transonic small disturbance equation J. Diff. Equations 125, 548–574 (1996)

    Article  MATH  Google Scholar 

  9. Chapman, C.J.: High Speed Flow. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Chen, G-Q., Feldman, M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Amer. Math. Soc. 16, 461–494 (2003)

    Google Scholar 

  11. Chen, S-X.: The fundamental solution of the Keldysh type operator, Science in China, Ser. A: Mathematics 52, 1829–1843 (2009)

    Article  MATH  Google Scholar 

  12. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

  13. Finkelstein, D., Rubinstein, J.: Ball lightning. Phys. Rev. 135, A390–A396 (1964)

    Google Scholar 

  14. Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garabedian, P.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  16. Gibbons, G.W.: Born-Infeld particles and Dirichlet p-branes. Nucl. Phys. B 514, 603–639 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  18. Gu, C.: On partial differential equations of mixed type in n independent variables. Commun. Pure Appl. Math. 34, 333–345 (1981)

    Article  MATH  Google Scholar 

  19. Hadamard, J.: Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Hermann, Paris (1932)

    Google Scholar 

  20. Hua, L.K.: Geometrical theory of partial differential equations. In: Chern, S.S., Wen–tsün, W. (eds.) Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, pp. 627–654. Gordon and Breach, New York (1982)

    Google Scholar 

  21. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Katsanis, T.: Numerical techniques for the solution of symmetric positive linear differential equations. Ph.D. thesis, Case Institute of Technology (1967)

    Google Scholar 

  23. Katsanis, T.: Numerical solution of symmetric positive differential equations. Math. Comp. 22, 763–783 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. Keyfitz, B.L.: Hold that light! Modeling of traffic flow by differential equations. In: Hardt, R., Forman, R. (eds.) Six Themes on Variation, pp. 127–153. American Mathematical Society, Providence (2005)

    Google Scholar 

  25. Keyfitz, B.L.: Mathematical properties of nonhyperbolic models for incompressible two-phase flow, e-print (2000). http://www.math.osu.edu/b̃keyfitz/blkp.html. Cited 1 Aug 2011

  26. Kong, D-X.: A nonlinear geometric equation related to electrodynamics. Europhys. Lett. 66, 617–623 (2004)

    Article  MathSciNet  Google Scholar 

  27. Kosmann-Schwarzbach, Y.: The Noether theorems: Invariance and conservation laws in the twentieth century. Sources and studies in the History of Mathematics and Physical Sciences. Springer, Berlin (2010)

    Google Scholar 

  28. Kreyszig, E.: On the theory of minimal surfaces. In: Rassias, Th.M. (ed.) The Problem of Plateau: A Tribute to Jesse Douglas and Tibor Radó, pp. 138–164. World Scientific, Singapore (1992)

    Chapter  Google Scholar 

  29. Lavrent’ev, M.A., Bitsadze, A.V.: On the problem of equations of mixed type [in Russian], Doklady Akad. Nauk SSSR (n.s.) 70, 373–376 (1950)

    Google Scholar 

  30. Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lin, C.S.: The local isometric embedding in R 3 of a 2-dimensional Riemanian manifolds with Gaussian curvature changing sign cleanly. Commun. Pure Appl. Math. 39, 867–887 (1986)

    Article  MATH  Google Scholar 

  32. Liu, J-L.: A finite difference method for symmetric positive operators. Math. of Computation 62, 105–118 (1994)

    Article  MATH  Google Scholar 

  33. Lupo, D., Payne, K.R.: Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types. Commun. Pure Appl. Math. 56, 403–424 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties. Contemporary Math. 283, 203–229 (1999)

    MathSciNet  Google Scholar 

  35. Milani, A., Picard, R.: Decomposition and their application to non-linear electro- and magnetostatic boundary value problems. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, pp. 370–340. Springer, Berlin (1988)

    Google Scholar 

  36. Morawetz, C.S.: A weak solution for a system of equations of elliptic-hyperbolic type. Commun. Pure Appl. Math. 11, 315–331 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  37. Otway, T.H.: Energy inequalities for a model of wave propagation in cold plasma. Publ. Mat. 52, 195–234 (2008)

    MATH  MathSciNet  Google Scholar 

  38. Otway, T.H.: Variational equations on mixed Riemannian-Lorentzian metrics. J. Geom. Phys. 58, 1043–1061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Payne, K.R.: Solvability theorems for linear equations of Tricomi type. J. Mat. Anal. Appl. 215, 262–273 (1997)

    Article  MATH  Google Scholar 

  40. Phillips, R.S., Sarason, L.: Singular symmetric positive first order differential operators. J. Math. Mech. 8, 235–272 (1966)

    MathSciNet  Google Scholar 

  41. Pilant, M.: The Neumann problem for an equation of Lavrent’ev-Bitsadze type. J. Math. Anal. Appl. 106, 321–359 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  42. Protter, M.H.: Uniqueness theorems for the Tricomi problem. I. J. Rat. Mech. Anal. 2, 107–114 (1953)

    MATH  MathSciNet  Google Scholar 

  43. Protter, M.H.: Uniqueness theorems for the Tricomi problem, II. J. Rat. Mech. Anal. 4, 721–732 (1955)

    MATH  MathSciNet  Google Scholar 

  44. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  45. Riabouchinsky, D.: Sur l’analogie hydraulique des mouvements d’un fluide compressible. C. R. Academie des Sciences, Paris 195, 998 (1932)

    Google Scholar 

  46. Sarason, L.: On weak and strong solutions of boundary value problems. Commun. Pure Appl. Math. 15, 237–288 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sarason, L.: Elliptic regularization for symmetric positive systems. J. Math. Mech. 16, 807–827 (1967)

    MATH  MathSciNet  Google Scholar 

  48. Sibner, L.M., Sibner, R.J., Yang, Y.: Generalized Bernstein property and gravitational strings in Born–Infeld theory. Nonlinearity 20, 1193–1213 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  50. Stoker, J.J.: Water Waves. Interscience, New York (1987)

    Google Scholar 

  51. Tso, K. (Chou, K-S.): Nonlinear symmetric positive systems. Ann. Inst. Henri Poincaré 9, 339–366 (1992)

    Google Scholar 

  52. Wilde, I.F.: Distribution Theory (Generalized Functions). e-Notes. http://homepage.ntlworld.cpm/ivan.wilde/notes/gf/gf.pdf Cited 2 Aug 2011

  53. Yang, Y.: Classical solutions in the Born-Infeld theory. Proc. R. Soc. Lond. Ser. A 456, 615–640 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otway, T.H. (2012). Mathematical Preliminaries. In: The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type. Lecture Notes in Mathematics(), vol 2043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24415-5_2

Download citation

Publish with us

Policies and ethics