Skip to main content

Soil–Subsurface Interrelated Matrix

  • Chapter
  • First Online:
Soil-Subsurface Change

Abstract

The soil–subsurface regime comprises two distinct, interacting phases which may be affected by anthropogenic chemicals: the solid phase, formed by mineral and organic constituents in various states of evolution, and the liquid phase, including the water retained in the soil–subsurface pores and in the aquifer. The impact of anthropogenic chemicals on the soil–subsurface system may lead to irreversible changes in the solid phase matrix and properties, as well as to alteration of the liquid phase chemical composition. In this chapter, we provide a basic overview of soil–subsurface system characteristics as formed under natural environmental conditions; the reader is referred to the literature for detailed information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen BL, Fanning DS (1983) Composition and soil genesis. In: Wilding EP (ed) Pedogenesis and soil taxonomy: I concepts and interactions. Elsevier, New York

    Google Scholar 

  • Bailey SW, Brindley GW, Johns WD, Martin RT, Ross M (1971) Clay mineral society report on nomenclature committee 1969–1970. Clay Clay Miner 19:132–133

    Article  Google Scholar 

  • Barnhisel RL, Bertsch PM (1989) Chloride and hydroxy-interlayered vermiculite and smectite. In: Dixon JB, Weeds SB (eds) Minerals in soils. SSSA, Madison, WI, pp 730–789

    Google Scholar 

  • Barrer RM, Jones DL (1970) Chemistry of soil minerals 8. Synthesis and properties of fluorhectorites. J Chem Soc A: 1531–1537

    Google Scholar 

  • Barshad I (1960) Thermodynamics of water adsorption and desorption on montmorillonite. Clays Clay Miner 8:84–101

    Article  CAS  Google Scholar 

  • Borchard G (1989) In: Dixon JB, Weeds SB (eds) Minerals in soils. SSSA, Madison, WI, pp 675–728

    Google Scholar 

  • Brady PV, Cygan RT, Nagy KL (1996) Molecular controls of kaolinite surface charge. J Colloid Interf Sci 183:356–364

    Article  CAS  Google Scholar 

  • Brindley GW, MacEvan DMC (1953) Structural aspects of the mineralogy of clays and related silicates. In: Green AT, Stewart GH (eds) A Symposium. The British Ceramic Society, Stoke on Trent, UK, pp 15–59

    Google Scholar 

  • Burdon J (2001) Are the traditional concepts of the structure of humic substances realistic? Soil Sci 199:752–769

    Article  Google Scholar 

  • Chester R, Green RN (1968) The infrared determination of quartz in sediments and sedimentary rocks. Chem Geol 3:199–212

    Article  CAS  Google Scholar 

  • Chilingar GV (1963) Relationship between porosity, permeability and grain size distribution of sands and sandstones. Proc inter Sedimentol Congr, Amsterdam

    Google Scholar 

  • Clapp CE, Hayes MHB, Simpson AJ, Kingery WL (2005) Chemistry of soil organic matter. In: Tabatabai MA, Sparks DL (eds) Chemical processes in soils. SSSA Book Series, Madison WI, pp 1–150

    Google Scholar 

  • Dennen WH (1966) Stoichiometric substitution in natural quartz. Geochim Cosmochim Acta 30:1235–1241

    Article  CAS  Google Scholar 

  • Dixon JB (1989) Kaoline and serpentine group minerals. In: Dixon JB, Weeds SB (eds) Minerals in soils. SSSA, Madison, WI, pp 468–527

    Google Scholar 

  • Drees LR, Wilding LP, Smeck NE, Senkayi AL (1989) Silica in soils, quartz and disordered silica polymorphs. In: Dixon JB, Weeds SB (eds) Minerals in soil environments. 2nded, SSSA Book Series 1, Madison, WI, pp 913–974

    Google Scholar 

  • Dyer CL, Kopittke PM, Sheldon AR, Memzies NW (2008) Influence of soil moisture content on soil solution composition. Soil Sci Soc Am J 72:355–361

    Article  CAS  Google Scholar 

  • Essington ME (2004) Soil and water chemistry: an integrative approach. CRC, Boca Raton, FL

    Google Scholar 

  • Farmer VC (1978) Water on partial surfaces. In: Greenland DJ, Hayes NHB (eds) The chemistry of soil constituents. Wiley, NY, pp 405–449

    Google Scholar 

  • Farmer VC, Russel HD (1967) Infrared absorption spectrometry in clay studies. Clay Clay Miner 15:121–142

    Article  CAS  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Engelwood Cliffs, NJ

    Google Scholar 

  • Frondel C (1962) Dana’s system of mineralogy. III Silica minerals. Wiley, New York

    Google Scholar 

  • Giese RF Jr (1982) Theoretical studies of the kaolin minerals: electrostatic calculation. Bull Mineral 105:417–424

    CAS  Google Scholar 

  • Gilkes RY (1990) Mineralogical insights into soil productivity: An anatomical perspective. In: Proc 14th Congress of Soil Sci, Kyoto, Japan Trans Plenary Papers. pp 63:73

    Google Scholar 

  • Grim RE (1962) Clay mineralogy. Science 135:890–898

    Article  CAS  Google Scholar 

  • Gruner JW (1932) Crystal structure of kaolinite. Z Kristallogr 83:75–88

    CAS  Google Scholar 

  • Guggenberger G, Keiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310

    Article  CAS  Google Scholar 

  • Hatcher PG, Spiker EC (1988) Selective degradation of plant biomolecules. In: Frimel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, Chichester, UK, pp 59–74

    Google Scholar 

  • Hayes MHB, Malcom RL (2001) Consideration of composition and aspects of the structure of humic substances. In: Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (eds) Humic substances and chemical contaminants. SSSA, Madison, WI, pp 1–39

    Google Scholar 

  • Hayes MHB, Swift RR (1978) The chemistry of soil organic colloids. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil constituents. Wiley, Chichester, UK, pp 170–320

    Google Scholar 

  • Herbillon AJ, Frankart R, Vielvoye L (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence. Clay Miner 16:195–201

    Article  CAS  Google Scholar 

  • Horne RE (1969) Marine chemistry. Wiley, NY

    Google Scholar 

  • Hurlbut CS, Klein C (1977) Manual of mineralogy. Wiley, New York

    Google Scholar 

  • Jackson ML (1964) Chemical composition of soils. In: Bear FE (ed) Chemistry of the soil, 2nd edn. Van Nostrand-Reinhold, New York, pp 71–141

    Google Scholar 

  • Jansen S, Malaty AM, Nabara S, Johnson E, Ghabbour E, Davies G, Vanum JM (1996) Structural modeling in humic acids. Mater Sci Eng C4:175–179

    CAS  Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and accrual of particulate and mineral associated organic matter. Soil Biol Biochem 28:665–676

    Article  CAS  Google Scholar 

  • Katz MYA, Katz MM, Rasskazov AA (1970) Mineral studies in the gravitation gradient field 2. Changes of quartz and density due to natural and experimental “maturation”. Sedimentology 15:161–177

    Article  Google Scholar 

  • Kaviratna PD, Pinnavaia TJ, Schroeder PA (1996) Dielectric properties of smectite clays. J Phys Chem Solids 57:1897–1906

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton RA (2007) A conceptual model of organo mineral interactions in soils: self assembly of organic molecular fragments in multilayered structure on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Kong AYY, Six J, Bryant DC, Denison RF, Kessel C (2005) The relationship between carbon input, aggregation and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085

    Article  CAS  Google Scholar 

  • Kononova MM (1966) Soil organic matter: its nature, its role in soil formation and fertility, 2nd edn. Pergamon, Oxford, UK

    Google Scholar 

  • Koorevar P, Menelik G, Dirksen C (1983) Elements of soil physics, developments in soil science #13. Elsevier, Amsterdam

    Google Scholar 

  • Leenheer JA, Nanny MA, McIntyre C (2003) Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater. Environ Sci Technol 37:2323–2331

    Article  CAS  Google Scholar 

  • Lehman KJ, Solomon D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85:45–57

    Article  Google Scholar 

  • Lim CH, Jackson ML, Koons RD, Helmke PA (1980) Kaolons: sources of differences in cation-exchange capacities and cesium retention. Clays Clay Miner 28:223–229

    Article  CAS  Google Scholar 

  • Low PF (1981) The swelling of clay: III dissociation of exchangeable cations. Soil Sci Soc Am J 45:1074–1078

    Article  CAS  Google Scholar 

  • Margolis SV, Krinsley DH (1974) Processes of formation and environmental occurrence of microfeatures on detrital quartz grains. Am J Sci 274:449–464

    Article  Google Scholar 

  • Melo VF, Singh B, Schaefer CEGR, Novais RF, Fontes MPF (2001) Chemical and mineralogical properties of kaolinite-rich Brazilian Soils. Soil Sci Soc Am J 65:1324–1333

    Article  CAS  Google Scholar 

  • Morgan DJ, Highley DE, Bland DJ (1979) A montmorillonite, kaolinite association in the Lower Cretaceous of south-west England. In: Mortaland M, Farmer VC (eds) Proc Int Clay Conf. Pergamon, Oxford, pp 301–310

    Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  Google Scholar 

  • Schofield RK, Samson HR (1953) The deflocculation of kaolinite suspension and the accompanying change-over from positive to negative chloride adsorption. Clay Miner Bull 2:45–51

    Article  CAS  Google Scholar 

  • Schofield RK, Samson HR (1954) Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Discuss Faraday Soc 18:135–145

    Article  CAS  Google Scholar 

  • Schulten HR (2001) models of humic structure :association of humic acids and organic matter in soils and water. In: Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (eds) Humic substances and chemical contaminants. SSSA, Madison, WI, pp 73–88

    Google Scholar 

  • Schulten HR, Schnitzer M (1993) A state of the art: structural concept for humic substances. Naturwissenschaften 80:29–30

    Article  CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1997) Chemical model structures for soil organic matter and solid. Soil Sci 162:115–130

    Article  CAS  Google Scholar 

  • Schulze DG (1989) An introduction to soil mineralogy. In: Dixon JB, Weed SB (eds) Minerals in soil environments. SSSA Book Series 1, Madison, WI

    Google Scholar 

  • Six J, Connant RT, Paul EA, Paustian K (2002) Stabilization mechanism of soil organic matter: implication for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Slayter RO (1967) Plant-water relationships. Academic, London, p 366

    Google Scholar 

  • Sposito G (1973) Volume changes in swelling soils. Soil Sci 115:315–320

    Article  CAS  Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Sposito G, Prost R (1982) Structure of water on smectites. Chem Rev 82:553–573

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Stillinger FH (1980) Water revisited. Science 209:451–453

    Article  CAS  Google Scholar 

  • Stober W (1967) Formation of silicic acid in aqueous suspension of different silica modification. In: Goulded RF (ed) Equilibrium concepts in natural water systems. Adv Chem Ser 67:161–172

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9011

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soil. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Walworth JL (1992) Soil drying and rewetting or freezing and thawing affects soil solution composition. Soil Sci Soc Am J 56:433–437

    Article  Google Scholar 

  • Weinhold F (1998) Quantum cluster equilibrium theory of liquids: illustrative application to water. J Chem Phys 109:373–384

    Article  CAS  Google Scholar 

  • Wernet P, Nordlund D, Bergman U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsh TK, Ojamae L, Glazel P, Petterson LGM, Nilsson A (2004) The structure of the first coordination shell in liquid water. Science 304:995–999

    Article  CAS  Google Scholar 

  • Wershaw RL (1986) A new model for humic materials and the interaction with hydrophobic chemicals in soil-water or sediment-water. J Contam Hydrol 1:29–45

    Article  CAS  Google Scholar 

  • Wershaw RL (1993) Model for humus in soils and sediments. Environ Sci Tech 27:814–816

    Article  Google Scholar 

  • Wershaw RL (2000) The study of humic substances – In search of a paradigm. In: Ghabbour EA, Devies G (eds) Humic substances, versatile components of plants, soil and water. Royal Soc Chem Cambridge, Cambridge, UK, pp 1–7

    Google Scholar 

  • Wershaw RL, Llaguno EC, Leenheer JA (1996) Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state (13) CNMR. Coll Surf A-Physicochem Eng Aspects 108:213–223

    Article  CAS  Google Scholar 

  • Wilding LP, Smeck NE, Drees LR (1989) Silica in soils. In: Dixon JB, Weeds SB (eds) Minerals in soils. SSSA, Madison WI, pp 471–553

    Google Scholar 

  • Wolt JD (1994) Soil solution chemistry; application to environmental science and agriculture. Wiley, New York

    Google Scholar 

  • Yariv S, Cross H (1979) Geochemistry of colloid systems. Springer, Heidelberg

    Book  Google Scholar 

  • Yaron-Marcovich D, Chen Y, Nir S, Prost R (2005) High resolution electron microscopy structural studied of organo-clay nanocomposites. Environ Sci Technol 39:1231–1239

    Article  CAS  Google Scholar 

  • Yerima BPK, Calhoun FG, Senkayi AL, Dixon JB (1985) Occurrence of interstratified kaolinite-smectite in El Salvador vertisols. Soil Sci Soc Am J 49:462–466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Yaron .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yaron, B., Dror, I., Berkowitz, B. (2012). Soil–Subsurface Interrelated Matrix. In: Soil-Subsurface Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24387-5_2

Download citation

Publish with us

Policies and ethics